Abstract:
Acute cardiac ischemia, which is caused by the occlusion of a coronary artery, often leads to lethal ventricular arrhythmias or heart failure. The early diagnosis of this pathology is based on changes of the electrocardiogram (ECG), i.e. mainly shifts of the ST segment. However, the underlying mechanisms responsible for these shifts are not completely understood. Furthermore, clinical observations indicate that some acute ischemia cases can hardly be detected using standard 12-lead ECG only. Therefore, multi-scale computer simulations of cardiac ischemia using realistic models of human ventricles were carried out in this work. For this purpose, the transmembrane voltage distributions in the heart and the corresponding body surface potentials were computed with varying transmural extent of the ischemic region at different ischemia stages. Some of the simulated ischemia cases were electrically silent, i.e. they could hardly be identified in the 12-lead ECG.