F. B. Sachse, G. Seemann, K. Chaisaowong, and D. Weiß. Quantitative reconstruction of cardiac electromechanics in human myocardium: Assembly of electrophysiological and tension generation models. In J. Cardiovasc. Electrophysiol., vol. 14(S10) , pp. S210-S218, 2003
O. Dössel, G. Seemann, F. B. Sachse, and D. L. Weiß. Quantitative reconstruction of cardiac electromechanics in human myocardium: Regional heterogeneity. In J. Cardiovasc. Electrophysiol., vol. 14(S10) , pp. S219-S228, 2003
D. L. Weiß, O. Dössel, G. Seemann, and F. B. Sachse. Investigation of electrophysiological heterogeneity and anisotropy across the human ventricular wall. In Biomedizinische Technik, vol. 48-1, pp. 228-229, 2003
O. Dössel, G. Seemann, F. B. Sachse, and D. L. Weiß. Investigation of Fibrillation in Human Left Ventricle with a Reaction-Diffusion Model. In Biomedizinische Technik, vol. 48-1, pp. 226-227, 2003
Student Theses (1)
D. L. Weiß. Charakterisierung der Ventrikelwand durch anatomische und elektrophysiologische Modellierung. Institute of Biomedical Engineering, Universität Karlsruhe (TH). Diplomarbeit. 2003
Abstract:
Die computergestu ̈tzte Simulation des Verhaltens von Herzmuskelzellen und der Ausbreitung der elektrischen Erregung im Herzgewebe hilft Technikern und Medizinern, Vorga ̈nge im Herzen zu analysieren und zu verstehen. Exakte Modelle ko ̈nnen die Realita ̈t sehr gut nachbilden. Daher ist die Entwicklung eines Modelles der menschlichen linksventrikula ̈ren Herzwand unter Beru ̈ck- sichtigung transmural heterogener Ionenstro ̈me und der anisotropen Faserorientierung Gegenstand dieser Diplomarbeit.Kapitel 1 liefert eine Einfu ̈hrung in das Thema und erla ̈utert die Aufgabenstellung. Das zweite Kapitel hat die Elektrophysiologie von einzelnen Zellen zum Inhalt. Im darauf folgenden Kapitel wird eine U ̈bersicht u ̈ber die Anatomie und Elektrophysiologie des menschlichen Herzens sowie u ̈ber das Verhalten kardialer Myozyten im Zellverband gegeben.Kapitel 4 stellt die bisher untersuchten elektrophysiologischen Unterschiede innerhalb der ventriku- la ̈ren Herzwand vor. Hauptaugenmerk liegt auf transmuralen Ionenstromgradienten, die in mensch- lichen Ventrikeln festgestellt werden konnten. Weiterhin wird auf Messungen der Faserorientierung im menschlichen Herzen eingegangen.Das Zellmodell, welches im Laufe der Arbeit an die Anforderungen angepasst wurde, wird im fu ̈nften Kapitel vorgestellt. Es handelt sich um ein Modell, bei dem sich die elektrophysiologischen Eigenschaften der Einzelzelle aus gekoppelten Differentialgleichungen ergeben. Eine Simulation der Erregung im Zellverband wird mit einem der anschließend dargestellten Modelle der elektrischen Erregungsausbreitung ermo ̈glicht.In Kapitel 6 wird auf die Entwicklung des heterogenen Ventrikelwandmodelles eingegangen. Die elektrophysiologischen Modellanpassungen finden zuna ̈chst auf einzelzellula ̈rer Ebene statt. Die Definitionen verschiedener Ionenstro ̈me werden so modifiziert, dass das Verhalten dieser Stro ̈me vom Modell realita ̈tsnah abgebildet wird. Als Qualita ̈tskriterium der Anpassung wird anschließend der Verlauf des Aktionspotentials mit den gefundenen Parametrisierungen herangezogen. Durch Untersuchung des Verhaltens im elektrotonisch gekoppelten Zellverband werden weitere Parameter des Ventrikelwandmodelles bestimmt. Die Einbringung der anisotropen Faserorientierung in das zugrunde liegende anatomische Modell bildet den Abschluss dieses Kapitels.Kapitel 7 gibt einen U ̈berblick, wie sich ein Modell der menschlichen ventrikula ̈ren Wand unter Be- ru ̈cksichtigung transmuraler Inhomogenita ̈ten der Ionenstro ̈me und einer anisotropen Orientierung der Herzmuskelzellen im Computer generieren la ̈sst. Die Ergebnisse, die sich mit dem entwickelten Herzwandmodell erzielen lassen, werden im achten Kapitel beschrieben. Mit dem Modell wird sowohl das Verhalten von Einzelzellen als auch das von Zellen in einem eindimensionalen und einem dreidimensionalen gekoppelten Verband untersucht. Weiterhin wird das Verhalten im physiologischen und in pathologischen Fa ̈llen betrachtet. Dabei zeigt sich, dass die erzielten Simulationsresultate zum gro ̈ßten Teil mit denen von Experimenten vergleichbar sind. Lediglich die Ursachen des LQT1-Syndroms mu ̈ssen neu u ̈berdacht werden, da sich die Messergebnisse mit den bisherigen Annahmen nicht erkla ̈ren lassen.