Abstract:
Background: Intracardiac electrograms are an indispensable part during diagnosis of supraventriculararrhythmias, but atrial activity (AA) can be obscured by ventricular far-fields (VFF). Concepts based onstatistical independence like principal component analysis (PCA) cannot be applied for VFF removalduring atrial tachycardia with stable conduction.Methods: A database of realistic electrograms containing AAand VFF was generated. Both PCA and thenew technique periodic component analysis (πCA) were implemented, benchmarked, and applied toclinical data.Results: The concept of πCA was successfully verified to retain compromised AA morphology,showing high correlation (cc = 0.98 ± 0.01) for stable atrial cycle length (ACL). Performance ofPCA failed during temporal coupling (cc = 0.03 ± 0.08) but improved for increasing conductionvariability (cc = 0.77 ± 0.14). Stability of ACL was identified as a critical parameter for πCAapplication. Analysis of clinical data confirmed these findings.Conclusion: πCA is introduced as a powerful new technique for artifact removal in periodic signals.Its concept and performance were benchmarked against PCA using simulated data and demonstratedon measured electrograms.