Abstract:
Aims Chronic left atrial enlargement (LAE) increases the risk of atrial fibrillation. Electrocardiogram (ECG) criteria might provide a means to diagnose LAE and identify patients at risk; however, current criteria perform poorly. We seek to characterize the potentially differential effects of atrial dilation vs. hypertrophy on the ECG P-wave. Methods and results We predict effects on the P-wave of (i) left atrial dilation (LAD), i.e. an increase of LA cavity volume without an increase in myocardial volume, (ii) left atrial concentric hypertrophy (LACH), i.e. a thickened myocardial wall, and (iii) a combination of the two. We performed a computational study in a cohort of 72 anatomical variants, derived from four human atrial anatomies. To model LAD, pressure was applied to the LA endocardium increasing cavity volume by up to 100%. For LACH, the LA wall was thickened by up to 3.3 mm. P-waves were derived by simulating atrial excitation propagation and computing the body surface ECG. The sensitivity regarding changes beyond purely anatomical effects was analysed by altering conduction velocity by 25% in 96 additional model variants. Left atrial dilation prolonged P-wave duration (PWd) in two of four subjects; in one subject a shortening, and in the other a variable change were seen. Left atrial concentric hypertrophy, in contrast, consistently increased P-wave terminal force in lead V1 (PTF-V1) in all subjects through an enlarged amplitude while PWd was unaffected. Combined hypertrophy and dilation generally enhanced the effect of hypertrophy on PTF-V1. Conclusion Isolated LAD has moderate effects on the currently used P-wave criteria, explaining the limited utility of PWd and PTF-V1 in detecting LAE in clinical practice. In contrast, PTF-V1 may be a more sensitive indicator of LA myocardial hypertrophy.
Abstract:
The cardiac muscarinic receptor (M2R) regulates heart rate, in part, by modulating the acetylcholine (ACh) activated K+ current IK,ACh through dissociation of G-proteins, that in turn activate KACh channels. Recently, M2Rs were noted to exhibit intrinsic voltage sensitivity, i.e. their affinity for ligands varies in a voltage dependent manner. The voltage sensitivity of M2R implies that the affinity for ACh (and thus the ACh effect) varies throughout the time course of a cardiac electrical cycle. The aim of this study was to investigate the contribution of M2R voltage sensitivity to the rate and shape of the human sinus node action potentials in physiological and pathophysiological conditions. We developed a Markovian model of the IK,ACh modulation by voltage and integrated it into a computational model of human sinus node. We performed simulations with the integrated model varying ACh concentration and voltage sensitivity. Low ACh exerted a larger effect on IK,ACh at hyperpolarized versus depolarized membrane voltages. This led to a slowing of the pacemaker rate due to an attenuated slope of phase 4 depolarization with only marginal effect on action potential duration and amplitude. We also simulated the theoretical effects of genetic variants that alter the voltage sensitivity of M2R. Modest negative shifts in voltage sensitivity, predicted to increase the affinity of the receptor for ACh, slowed the rate of phase 4 depolarization and slowed heart rate, while modest positive shifts increased heart rate. These simulations support our hypothesis that altered M2R voltage sensitivity contributes to disease and provide a novel mechanistic foundation to study clinical disorders such as atrial fibrillation and inappropriate sinus tachycardia.
Abstract:
BACKGROUND: Complementary to clinical and experimental studies, computational cardiac modeling serves to obtain a comprehensive understanding of the cardiovascular system in order to analyze dysfunction, evaluate existing, and develop novel treatment strategies. OBJECTIVES: We describe the basics of multiscale computational modeling of cardiac electrophysiology from the molecular ion channel to the whole body scale. By modeling cardiac ischemia, we illustrate how in silico experiments can contribute to our understanding of how the pathophysiological mechanisms translate into changes observed in diagnostic tools such as the electrocardiogram (ECG). MATERIALS AND METHODS: Quantitative in silico modeling spans a wide range of scales from ion channel biophysics to ECG signals. For each of the scales, a set of mathematical equations describes electrophysiology in relation to the other scales. Integration of ischemia-induced changes is performed on the ion channel, single-cell, and tissue level. This approach allows us to study how effects simulated at molecular scales translate to changes in the ECG. RESULTS: Ischemia induces action potential shortening and conduction slowing. Hence, ischemic myocardium has distinct and significant effects on propagation and repolarization of excitation, depending on the intramural extent of the ischemic region. For transmural and subendocardial ischemic regions, ST segment elevation and depression, respectively, were observed, whereas intermediate ischemic regions were found to be electrically silent (NSTEMI). CONCLUSIONS: In silico modeling contributes quantitative and mechanistic insight into fundamental ischemia-related arrhythmogenic mechanisms. In addition, computational modeling can help to translate experimental findings at the (sub-)cellular level to the organ and body context (e. g., ECG), thereby providing a thorough understanding of this routinely used diagnostic tool that may translate into optimized applications.
Abstract:
Computational modeling is an important tool to advance our knowledge on cardiac diseases and their underlying mechanisms. Computational models of conduction in cardiac tissues require identification of parameters. Our knowledge on these parameters is limited, especially for diseased tissues. Here, we assessed and quantified parameters for computational modeling of conduction in cardiac tissues. We used a rabbit model of myocardial infarction (MI) and an imaging-based approach to derive the parameters. Left ventricular tissue samples were obtained from fixed control hearts (animals: 5) and infarcted hearts (animals: 6) within 200 μm (region 1), 250-750 μm (region 2) and 1,000-1,250 μm (region 3) of the MI border. We assessed extracellular space, fibroblasts, smooth muscle cells, nuclei and gap junctions by a multi-label staining protocol. With confocal microscopy we acquired three-dimensional (3D) image stacks with a voxel size of 200 × 200 × 200 nm. Image segmentation yielded 3D reconstructions of tissue microstructure, which were used to numerically derive extracellular conductivity tensors. Volume fractions of myocyte, extracellular, interlaminar cleft, vessel and fibroblast domains in control were (in %) 65.03 ± 3.60, 24.68 ± 3.05, 3.95 ± 4.84, 7.71 ± 2.15, and 2.48 ± 1.11, respectively. Volume fractions in regions 1 and 2 were different for myocyte, myofibroblast, vessel, and extracellular domains. Fibrosis, defined as increase in fibrotic tissue constituents, was (in %) 21.21 ± 1.73, 16.90 ± 9.86, and 3.58 ± 8.64 in MI regions 1, 2, and 3, respectively. For control tissues, image-based computation of longitudinal, transverse and normal extracellular conductivity yielded (in S/m) 0.36 ± 0.11, 0.17 ± 0.07, and 0.1 ± 0.06, respectively. Conductivities were markedly increased in regions 1 (+75, +171, and +100%), 2 (+53, +165, and +80%), and 3 (+42, +141, and +60%). Volume fractions of the extracellular space including interlaminar clefts strongly correlated with conductivities in control and MI hearts. Our study provides novel quantitative data for computational modeling of conduction in normal and MI hearts. Notably, our study introduces comprehensive statistical information on tissue composition and extracellular conductivities on a microscopic scale in the MI border zone. We suggest that the presented data fill a significant gap in modeling parameters and extend our foundation for computational modeling of cardiac conduction.