Abstract:
Nowadays, a large share of the global population is affected by heart rhythm disorders. Computational modelling is a useful tool for understanding the dynamics of cardiac arrhythmias. Several recent clinical and experimental studies suggest that atrial fibrillation is maintained by re-entrant drivers (e.g. rotors). As a consequence, numerous works have addressed atrial arrhythmogenicity of a given electrophysiological model using different methods to simulate the perpetuation of re-entrant activity. However, no common procedure to test atrial fibrillation vulnerability has yet been defined. Here, we systematically evaluate and compare two state-of-the-art methods. The first one is rapid extrastimulus pacing from rim of the four pulmonary veins. The second consists of placing phase singularities in the atria, estimating an activation time map by solving the Eikonal equation and finally using this as initial condition for the electrical cardiac propagation simulation. In this way, we are forcing the wavefronts to follow re-entrant circuits with low computational cost thus less simulation time. We aim to identify a methodology to quantify arrhythmia vulnerability on patient-specific atrial geometries and substrates. We will proceed with in-silico experiments, comparing the results of these two methods to initiate re-entrant activity, checking the influence of the different parameters on the dynamics on the re-entrant drivers and finally extracting a valid set of parameters allowing to reliably assess re-entry vulnerability. The final objective is to come up with an easily reproducible minimal set of simulations to assess vulnerability of a particular atrial substrate (cellular and tissue model) or of distinct anatomical atrial geometries to arrhythmic episodes. Given the great need of exploring susceptibility to atrial arrhythmias, i.e. after a first ablation procedure, this study can provide a useful tool to test new treatment strategies and to learn how to prevent the onset and progression of atrial fibrillation.