Abstract:
In den Lebenswissenschaften ist die Individualisierte Medizin aktuell ein zentrales Thema, vielleicht ein Hype. Das bestätigen auch synonyme, erweiternde und klärende Begriffe wie Personalisierte Medizin, Customized Medicine, Stratifizierende Medizin oder Präzisionsmedizin. In einer State of the Union Address an die Bevölkerung der Vereinigten Staaten von Amerika hat Präsident Barack Obama 2015 die Bedeutung der Präzisionsmedizin hervorgehoben [1]. Diese Initiative wurde inhaltlich wesentlich vom Direktor des National Institute of Health, dem Genetiker Francis Collins, vorangetrieben [2]. Individualisierte Medizin, das ist eine gute Botschaft, betont sie doch die Wertigkeit des einzelnen Patienten. Für klinisch tätige Ärzte ist das bereits eine Selbstverständlichkeit. Die Bedeutung eines Wortes, und das sei mit einem Lächeln hinzugefügt, zeigt sich nach Wittgenstein im Gebrauch der Sprache [3].Die Nationale Akademie der Wissenschaften Leopoldina, die acatech Deutsche Akademie der Technikwissenschaften und die Union der Deutschen Akademien der Wissenschaften haben im Dezember 2014 eine Stellungnahme über Voraussetzungen und Konsequenzen der Individualisierten Medizin publiziert. Darin wird der Fokus, wie im Vorwort ausgeführt, auf molekulare, genetische und pharmakologische Aspekte der Onkologie gelegt, einen Bereich, in dem die Individualisierung am weitesten fortgeschritten ist. Diese Beschränkung bedeutet, dass andere eng assoziierte Themen, wie die Patienten- und Versorgungsperspektiven, der Bereich der Medizintechnik oder neue Erkrankungen, beispielsweise in der Psychiatrie, in dieser Studie nicht beleuchtet werden. Die Behandlung dieser Gebiete bedarf einer separaten nachfolgenden Betrachtung. [4].Vor einer Betrachtung wesentlicher Beiträge allein der Bildgebung in der Individualisierten Medizin seien wenige vorausschickende Bemerkungen zu zwei Grenz-Fragen der Wissenschaft gemacht. Was steht für und gegen Stellungnahmen der genannten Akademien? Erfüllt die Beschäftigung mit der Bildgebung Kriterien der Wissenschaft?Eine der Aufgaben der Akademien ist es, Ordnung in die vorhandenen Aussagen und auch damit vorhandene Daten zu bringen, die in unterschiedlichen Disziplinen hervorgebracht werden, um daraus ein Gesamtbild zu formen. Weiterhin sollen Empfehlungen gegeben werden, wie die Entwicklungen günstig zu beeinflussen sind [5]. Wichtige Grenzen der wissenschaftlichen Politik- bzw. Gesellschaftsberatung bilden etwa Katastrophenwarnungen und Heilsverheißungen, andererseits nicht-altruistische, sondern dem Eigeninteresse dienende, wie auch politisierende Verlautbarungen. Das setzt eine Selbstbegrenzung voraus.Wünschenswert ist bei wissenschaftlichem Handeln der Respekt von und vor Grenzen, ist die Distanz zur Macht. Diese Macht kann der Politik, der Ökonomie und auch den Medien zugeschrieben werden; fatal sind Nähe oder gar Einfluss von Ideologien. Dabei wird nicht nur ein behutsamer Umgang mit Empfehlungen angesprochen; im wissenschaftlichen Handeln sind gerade beim Gegenstand der Bildgebung Berührungen mit der und sogar Überlappungen mit Interessen der Industrie möglich, teilweise gewünscht und fruchtbar. Letztlich ist es ja immer die Industrialisierung, die medizinischen Fortschritt, sei er pharmakologisch oder technologisch abbildbar, breiten Bevölkerungsgruppen und entlegenen Standorten zugänglich macht. Das bedarf immer einer gegenseitigen kritischen Begleitung.Die Wissenschaft dient dem Erkenntnisgewinn. Dazu gehört eine methodische Suche nach Wahrheit, die alle Befähigten überprüfen und nachvollziehen können. Wenn dieses angenommen, akzeptiert werden kann, dann sind die Technikwissenschaften Wissenschaften, dann betreiben Radiologie und Nuklearmedizin Wissenschaft (science). Dann bedarf es nicht der Aufzählung von Nobelpreisen oder ähnlichen Anerkennungen in der Scientific Community. Dann bedarf es nicht der Aufzählung fachlicher Beispiele; die Methoden und die Technologien fallen nicht vom Himmel. Wissenschaft wird von Menschen betrieben und getragen. An Pioniere der Bildgebung, an Personen, wie Wilhelm Conrad Röntgen, Marie Curie, Godfrey Hounsfield, Peter Mansfield, Paul Lauterbur oder Stephan Hell sei erinnert.* Dieses Editorial wird zeitgleich in Nuklearmedizin publiziert. Schober O, Dössel O, Ermert H et al. Bildgebung in Klinik und Forschung: Beitrag zur Individualisierten Medizin? Nuklearmedizin 2017; 56: 157-161; https://doi.org/10.3413/2017-05-0002.
Abstract:
Lernende Systeme oder Machine Learning, so sind sich Fachleute einig, werden auch in der Medizin und der Medizintechnik zukünftig eine große Bedeutung erlangen – mit Vorteilen aber auch mit Risiken für Patientinnen und Patienten, Unternehmen und Fachpersonal. Dabei ergeben sich verschiedenste Herausforderungen im Umgang mit Machine-Learning-Systemen – unter anderem für praktische Behandlungssituationen, für die Qualitätskontrolle, für die Sicherheit in Notfallsituationen oder die Bewertung der vom Computer vorgeschlagenen Diagnosen und Therapiepfade. Die vorliegende acatech POSITION ist das Ergebnis einer Arbeitsgruppe von Wissenschaftlerinnen und Wissenschaftlern aus Medizin und Technik. Die Projektgruppe gibt einen Überblick über heutige Anwendungen von Machine Learning in der Medizintechnik und beleuchtet wichtige zukünftige Anwendungsfelder. Im Fokus stehen darüber hinaus ethische, rechtliche und regulatorische Aspekte sowie kritische Fragen zum Datenschutz und mögliche Veränderungen im Arzt-Patienten-Verhältnis. Neben Vorschlägen zum Aufbau großer medizinischer Datenbanken gibt diese Position auch Handlungsempfehlungen für Ärztinnen und Ärzte, Einrichtungen der Forschungsförderung und die Politik.
Abstract:
A miniaturized ceramic atmospheric plasma source for the utilization in life sciences has been developed. It is manufactured in LTCC-technology (low temperature cofired ceramic). The plasma generation is based on buried electrodes which lead to a Dielectric Barrier Discharge (DBD). The employed technology allows small feature sizes (electrode width 150 μm, barrier thickness 40μm etc.) as well as precision in the μm range, resulting in a very low power consumption of the system (approx. 5 W). Thus, the maximum temperature at the point of use can be kept below 40 °C. The flexibility of the manufacturing process (layer lamination, screen printing, patterning with picosecond laser etc.) offers additional features like robust fluidic structures (channels, chambers, gas distribution etc.) as well as the direct implementation of electronic components. The technology concept as well as the design of the ceramic parts and the handhold matched to the multi-well plate format is demonstrated. The plasma of the system can be tuned depending on the assembly of the system and the electric excitation. To prove the biocompatibility and the experimental compatibility with cell cultures (low temperature at the point of use), a method for temperature measurements on the bottom of a multi-well plate was developed. First results of the impact of the plasma source on cell cultures are presented. The effects occurring in the plasma, as well as their effects on the cell cultures (ozone formation, ultraviolet radiation etc.) are separately considered. Furthermore, the cell tolerability of the treatment with the micro-plasma source is investigated with L929 fibroblast cells.