Abstract:
Background: Catheter ablation of complex atrial arrhythmias, such as atrial fibrillation and atypical atrial flutter, is still challenging. Clinically evaluated ablation methods are leading to moderate success rates. Assessments of intracardiac electrograms are often done subjectively by the physician. Automatic algorithms can therefore improve the analysis of complex atrial electrograms (EGMs). In this work, we demonstrate a quantitative analysis of intracardiac EGMs from circular mapping catheters in humans. Both the wave direction and the local conduction velocity (CV) were calculated from individual wave fronts passing the catheter.Methods: Intracardiac EGMs measured with circular mapping catheters in humans were retrospectively analyzed. Five data sets from 3 patients undergoing catheter ablation of atrial fibrillation or flutter were available. Using a nonlinear energy operator, activation times from 9 bipolar catheter signals were calculated for each atrial activity. The resulting activation pattern was fitted to a cosine-shaped data model that has been validated in a previous simulation study. The cosine phase represented the wave direction. From the cosine amplitude and the catheter radius, the conduction velocity was calculated.Results: The wave directions in all five measurements were stable with a standard deviation below 10°. Calculated CVs were in the range of 70 to 110 cm/s, which is in accordance with published values. In one patient, electrograms were recorded during atrial stimulation. Stimulation cycle length was decreased from 500 to 300 milliseconds. Conduction velocity decreased by approximately 10% at a cycle length of 300 milliseconds compared with the CV at 500 milliseconds.Conclusion: The results show the ability to reliably extract wave direction and conduction velocity from intracardiac EGMs recorded with circular mapping catheters. Detected directions were stable, and the CV values were in a physiological range. As individual beats are analyzed, the method will also enable the quantitative study of singular events such as ectopic beats and facilitate the localization of tachycardia origins. Further, it will help to measure substrate parameters such as the CV and even CV restitution behavior. This way, the method can help to identify patient-specific physiological parameters that can be integrated into patient-specific models. Furthermore, it can directly provide quantitative data of high diagnostic value to the examiner and thereby improve clinical success rates.