Abstract:
Atrial arrhythmias, such as atrial flutter or fibrillation, are frequent indications for catheter ablation. Recorded intracardiac electrograms (EGMs) are, however, mostly evaluated subjectively by the physicians. In this paper, we present a method to quantitatively extract the wave direction and the local conduction velocity from one single beat in a circular mapping catheter signal. We simulated typical clinical EGMs to validate the method. We then showed that even with noise, the average directional error was below 10(°) and the average velocity error was below 5.4 cm/s. In a realistic atrial simulation, the method could clearly distinguish between stimuli from different pulmonary veins. We further analyzed eight clinical data segments from three patients in normal sinus rhythm and with stimulation. We obtained stable wave directions for each segment and conduction velocities between 70 and 115 cm/s. We conclude that the method allows for easy quantitative analysis of single macroscopic wavefronts in intracardiac EGMs, such as during atrial flutter or in typical clinical stimulation procedures after termination of atrial fibrillation. With corresponding simulated data, it can provide an interface to personalize electrophysiological (EP) models. Furthermore, it could be integrated into EP navigation systems to provide quantitative data of high diagnostic value to the physician