Abstract:
Under persistent atrial fibrillation (peAF), cardiac tissue experiences electrophysiological and structural remodeling. Fibrosis in the atrial tissue has an important impact on the myocyte action potential and its propagation. The objective of this work is to explore the effect of heterogeneities present in the fibrotic tissue and their impact on the intracardiac electrogram (EGM). Human atrial myocyte and fibroblast electrophysiology was simulated using mathematical models proposed by Koivumäki et al. to represent electrical remodeling under peAF and the paracrine effect of the transforming grow factor 1 (TGF-1). 2D tissue simulations were computed varying the density of fibrosis (10%, 20% and 40%), myofibroblasts and collagen were randomly distributed with different ratios (0%-100%, 50%-50% and 100%- 0%). Results show that increasing the fibrosis density changes the re-entry dynamics from functional to anatomical due to a block in conduction in regions with high fibrosis density (40%). EGM morphology was affected by different ratios of myofibroblasts-collagen. For low myofibroblast densities (below 50%) the duration of active segments was shorter compared to higher myofibroblasts densities (above 50%). Our results show that fibrosis heterogeneities can alter the dynamics of the re-entry and the morphology of the EGM.
Abstract:
The SuLMaSS project [1] will advance, develop, build, evaluate, and test infrastructure for sustainable lifecycle management of scientific software. The infrastructure is tested and evaluated by an existing cardiac electrophysiology simulation software project, which is currently in the prototype state and will be advanced towards optimal usability and a large and active user community. Thus, SuLMaSS is focused on designing and implementing application-oriented e-research technologies and the impact is three-fold: - Provision of a high quality, user-friendly cardiac electrophysiology simulation software package that accommodates attestable needs of the scientific community. - Delivery of infrastructure components for testing, safe-keeping, referencing, and versioning of all phases of the lifecycle of scientific software. - Serve as a best practice example for sustainable scientific software management. Scientific software development in Germany and beyond shall benefit through both the aforementioned best practice role model and the advanced infrastructure that will, in part, be available for external projects as well. With adding value for the wider scientific cardiac electrophysiology community, the software will be available under an open source license and be provided for a large share of people and research groups that can potentially leverage computational cardiac modeling methods. Institutional infrastructure will be extended to explore, evaluate and establish the basis for research software development regarding testing, usage, maintenance and support. The cardiac electrophysiology simulator will drive and showcase the infrastructure formation, thus serving as a lighthouse project. The developed infrastructure can be used by other scientific software projects in future and aims to support the full research lifecycle from exploration through conclusive analysis and publication, to archival, and sharing of data and source code, thus increasing the quality of research results. Moreover it will foster a community-based collaborative development and improve sustainability of research software.
Abstract:
Nowadays, a large share of the global population is affected by heart rhythm disorders. Computational modelling is a useful tool for understanding the dynamics of cardiac arrhythmias. Several recent clinical and experimental studies suggest that atrial fibrillation is maintained by re-entrant drivers (e.g. rotors). As a consequence, numerous works have addressed atrial arrhythmogenicity of a given electrophysiological model using different methods to simulate the perpetuation of re-entrant activity. However, no common procedure to test atrial fibrillation vulnerability has yet been defined. Here, we systematically evaluate and compare two state-of-the-art methods. The first one is rapid extrastimulus pacing from rim of the four pulmonary veins. The second consists of placing phase singularities in the atria, estimating an activation time map by solving the Eikonal equation and finally using this as initial condition for the electrical cardiac propagation simulation. In this way, we are forcing the wavefronts to follow re-entrant circuits with low computational cost thus less simulation time. We aim to identify a methodology to quantify arrhythmia vulnerability on patient-specific atrial geometries and substrates. We will proceed with in-silico experiments, comparing the results of these two methods to initiate re-entrant activity, checking the influence of the different parameters on the dynamics on the re-entrant drivers and finally extracting a valid set of parameters allowing to reliably assess re-entry vulnerability. The final objective is to come up with an easily reproducible minimal set of simulations to assess vulnerability of a particular atrial substrate (cellular and tissue model) or of distinct anatomical atrial geometries to arrhythmic episodes. Given the great need of exploring susceptibility to atrial arrhythmias, i.e. after a first ablation procedure, this study can provide a useful tool to test new treatment strategies and to learn how to prevent the onset and progression of atrial fibrillation.