D. Potyagaylo, O. Dossel, and P. van Dam. Influence of Modeling Errors on the Initial Estimate for Nonlinear Myocardial Activation Times Imaging Calculated With Fastest Route Algorithm. In IEEE Transactions on Biomedical Engineering, vol. 63(12) , pp. 2576-2584, 2016
Abstract:
Noninvasive reconstruction of cardiac electrical activity has a great potential to support clinical decision making, planning and treatment. Recently, significant progress has been made in the estimation of the cardiac activation from body surface potential maps (BSPMs) using boundary element method (BEM) with the equivalent double layer (EDL) as source model. In this formulation, noninvasive assessment of activation times results in a nonlinear optimization problem with an initial estimate calculated with the fastest route algorithm (FRA). Each FRAsimulated activation sequence is converted into the ECG. The best initialization is determined by the sequence providing the highest correlation between predicted and measured potentials.We quantitatively assess the effects of the forward modeling errors on the FRA-based initialization. We present three simulation setups to investigate the effects of volume conductor model simplifications, neglecting the cardiac anisotropy and geometrical errors on the localization of ectopic beats starting on the ventricular surface. For the analysis, 12-lead ECG and 99 electrodes BSPM system were used. The areas in the heart exposing the largest localization errors were volume conductor model and electrode configuration specific with an average error <10 mm. The results show the robustness of the FRA-based initialization with respect to the considered modeling errors.
D. Potyagaylo, A. Loewe, P. van Dam, and O. Dössel. ECG imaging of focal atrial excitation: Evaluation in a realistic simulation setup. In Computing in Cardiology, vol. 43, pp. 113-116, 2016
Abstract:
One promising application of electrocardiographic (ECG) imaging is noninvasive reconstruction of atrial activities. However, despite numerous clinical studies, which are mostly concerned with complex irregular excitation patterns, there are relatively few in silico investigations on the imaging of ectopic activation. In the present work, we explore the localization accuracy of ECG imaging regarding atrial focal sites. For the forward calculations, we used four realistic geometrical models with complex anatomical structure and a rule-based fiber orientation embedded into the atrial model. Excitation propagation was simulated with the monodomain model. For each geometrical model, 20 activation sequences originating from the posterior wall of the left atrium were simulated. Based on the bidomain theory, the body surface potential maps resulting from these focal events were computed. For the inverse reconstructions, we employed a full-search procedure based on the fastest route algorithm assuming uniform excitation propagation. Localization errors were revealed to be dependent on the model-specific atrial geometry. We also performed similarity analysis for the first halves of the P wave duration, which improved the results in three models.
Electrocardiographic imaging (ECGI) has recently gained attention as a viable diagnostic tool for reconstructing cardiac electrical activity in normal hearts as well as in cardiac arrhythmias. However, progress has been limited by the lack of both standards and unbiased comparisons of approaches and techniques across the community, as well as the consequent difficulty of effective collaboration across research groups.. To address these limitations, we created the Consortium for Electrocardiographic Imaging (CEI), with the objective of facilitating collaboration across the research community in ECGI and creating standards for comparisons and reproducibility. Here we introduce CEI and describe its two main efforts, the creation of EDGAR, a public data repository, and the organization of three collaborative workgroups that address key components and applications in ECGI. Both EDGAR and the workgroups will facilitate the sharing of ideas, data and methods across the ECGI community and thus address the current lack of reproducibility, broad collaboration, and unbiased comparisons.
ECG imaging is an emerging technology for the reconstruction of cardiac electric activity from non-invasively measured body surface potential maps. In this case report, we present the first evaluation of transmurally imaged activation times against endocardially reconstructed isochrones for a case of sustained monomorphic ventricular tachycardia (VT). Computer models of the thorax and whole heart were produced from MR images. A recently published approach was applied to facilitate electrode localization in the catheter laboratory, which allows for the acquisition of body surface potential maps while performing non-contact mapping for the reconstruction of local activation times. ECG imaging was then realized using Tikhonov regularization with spatio-temporal smoothing as proposed by Huiskamp and Greensite and further with the spline-based approach by Erem et al. Activation times were computed from transmurally reconstructed transmembrane voltages. The results showed good qualitative agreement between the non-invasively and invasively reconstructed activation times. Also, low amplitudes in the imaged transmembrane voltages were found to correlate with volumes of scar and grey zone in delayed gadolinium enhancement cardiac MR. The study underlines the ability of ECG imaging to produce activation times of ventricular electric activity-and to represent effects of scar tissue in the imaged transmembrane voltages.
Conference Contributions (1)
C. Ritter, G. Lenis, W. H. W. Schulze, D. Potyagaylo, and O. Dössel. Offset removal methods for the body surface potential map to improve the ECG imaging of ventricular ectopic beats. In Biosignalverarbeitung und Magnetische Methoden in der Medizin. Proceedings BBS 2016, pp. 1-4, 2016
Abstract:
This work investigates the impact of time constant offset in the body surface potential map (BSPM) on the recon- struction quality in electrocardiographic imaging (ECGI). For this purpose, a study comparing four different approaches for the reconstruction of the transmembrane voltage distribution (TMV) was carried out. From this four methods two of them were newly designed to estimate and remove the offset from the BSPM. The first approach uses a new formulation of the Tikhonov-Greensite method as augmented regularization to estimate and remove the time constant offset during the reconstruction. The second algorithm is related to classical signal processing. It applies a mode filter to remove the time constant offset in the BSPM and afterwards reconstructs the ventricular ectopic beat (VEB) using the Tikhonov-Greensite regularization. It can be shown that the time constant offset has a significant influence on the reconstruction quality and should be removed. The preferred method to remove time constant offset is the mode filter.
Dissertations (1)
D. Potyagaylo. Non-Invasive Electrocardiographic Imaging of Ventricular Activities: Data-Driven and Model-Based Approaches. Dissertation. 2016