Abstract:
Diseases caused by alterations of ionic concentrations are frequently observed challenges and play an important role in clinical practice. The clinically established method for the diagnosis of electrolyte concentration imbalance is blood tests. A rapid and non-invasive point-of-care method is yet needed. The electrocardiogram (ECG) could meet this need and becomes an established diagnostic tool allowing home monitoring of the electrolyte concentration also by wearable devices. In this review, we present the current state of potassium and calcium concentration monitoring using the ECG and summarize results from previous work. Selected clinical studies are presented, supporting or questioning the use of the ECG for the monitoring of electrolyte concentration imbalances. Differences in the findings from automatic monitoring studies are discussed, and current studies utilizing machine learning are presented demonstrating the potential of the deep learning approach. Furthermore, we demonstrate the potential of computational modeling approaches to gain insight into the mechanisms of relevant clinical findings and as a tool to obtain synthetic data for methodical improvements in monitoring approaches.
Abstract:
End-stage chronic kidney disease (CKD) patients are facing a 30% rise for the risk of lethal cardiac events (LCE) compared to non-CKD patients. At the same time, these patients undergoing dialysis experience shifts in the potassium concentrations. The increased risk of LCE paired with the concentration changes suggest a connection between LCE and concentration disbalances. To prove this link, a continuous monitoring device for the ionic concentrations, e.g. the ECG, is needed. In this work, we want to answer if an optimised signal processing chain can improve the result quantify the influence of a disbalanced training dataset on the final estimation result. The study was performed on a dataset consisting of 12-lead ECGs recorded during dialysis sessions of 32 patients. We selected three features to find a mapping from ECG features to [K+]o: T-wave ascending slope, T-wave descending slope and T-wave amplitude. A polynomial model of 3rd order was used to reconstruct the concentrations from these features. We solved a regularised weighted least squares problem with a weighting matrix dependent on the frequency of each concentration in the dataset (frequent concentration weighted less). By doing so, we tried to generate a model being suitable for the whole range of the concentrations.With weighting, errors are increasing for the whole dataset. For the data partition with [K+]o<5 mmol/l, errors are increasing, for [K+]o≥5 mmol/l, errors are decreasing. However, and apart from the exact reconstruction results, we can conclude that a model being valid for all patients and not only the majority, needs to be learned with a more homogeneous dataset. This can be achieved by leaving out data points or by weighting the errors during the model fitting. With increasing weighting, we increase the performance on the part of the [K+]o that are less frequent which was desired in our case.
Abstract:
The morphology of the electrocardiogram (ECG) varies among different healthy subjects due to anatomical and structural reasons, such as for example the shape of the heart geometry or the position and size of surrounding organs in the torso. Knowledge about these ECG morphology changes could be used to parameterize electrophysiological simula- tions of the human heart. In this work, we detected the boundaries of ECG waveforms, i.e. the P-wave, the QRS-complex and the T-wave, in 12- lead ECGs from 918 healthy subjects in the Physionet Com- puting in Cardiology Challenge 2020 Database with the IBT openECG toolbox. Subsequently, we obtained the onset, the peak and the offset of each P-wave, QRS-complex and T-wave in the signal. In this way, the duration of the P-wave, the QRS- complex and the T-wave, the PQ-, RR- and the QT-interval as well as the amplitudes of the P-wave, the Q-, R- and S- peak and the T-wave in each lead were extracted from the 918 healthy ECGs. Their statistical distributions and correlation between each other were assessed. The highest variabilities among the 918 healthy subject were found for the RR interval and the amplitudes of the QRS- complex. The highest correlation was observed for feature pairs that represent the same feature in different leads. Es- pecially the R-peak amplitudes showed a strong correlation across different leads. The calculated feature distributions can be used to optimize the parameters of populations of cardiac electrophysiological models. In this way, realistic in-silico generated surface ECGs can be simulated in large scale and could be used as input data for machine learning algorithms for a classification of cardio- vascular diseases.