BACKGROUND AND OBJECTIVE: Progress in biomedical engineering has improved the hardware available for diagnosis and treatment of cardiac arrhythmias. But although huge amounts of intracardiac electrograms (EGMs) can be acquired during electrophysiological examinations, there is still a lack of software aiding diagnosis. The development of novel algorithms for the automated analysis of EGMs has proven difficult, due to the highly interdisciplinary nature of this task and hampered data access in clinical systems. Thus we developed a software platform, which allows rapid implementation of new algorithms, verification of their functionality and suitable visualization for discussion in the clinical environment. METHODS: A software for visualization was developed in Qt5 and C++ utilizing the class library of VTK. The algorithms for signal analysis were implemented in MATLAB. Clinical data for analysis was exported from electroanatomical mapping systems. RESULTS: The visualization software KaPAVIE (Karlsruhe Platform for Analysis and Visualization of Intracardiac Electrograms) was implemented and tested on several clinical datasets. Both common and novel algorithms were implemented which address important clinical questions in diagnosis of different arrhythmias. It proved useful in discussions with clinicians due to its interactive and user-friendly design. Time after export from the clinical mapping system to visualization is below 5min. CONCLUSION: KaPAVIE(2) is a powerful platform for the development of novel algorithms in the clinical environment. Simultaneous and interactive visualization of measured EGM data and the results of analysis will aid diagnosis and help understanding the underlying mechanisms of complex arrhythmias like atrial fibrillation.
Whole-chamber mapping using a 64-pole basket catheter (BC) has become a featured approach for the analysis of excitation patterns during atrial fibrillation. A flexible catheter design avoids perforation but may lead to spline bunching and influence coverage. We aim to quantify the catheter deformation and endocardial coverage in clinical situations and study the effect of catheter size and electrode arrangement using an in silico basket model. Atrial coverage and spline separation were evaluated quantitatively in an ensemble of clinical measurements. A computational model of the BC was implemented including an algorithm to adapt its shape to the atrial anatomy. Two clinically relevant mapping positions in each atrium were assessed in both clinical and simulated data. The simulation environment allowed varying both BC size and electrode arrangement. Results showed that interspline distances of more than 20 mm are common, leading to a coverage of less than 50% of the left atrial (LA) surface. In an ideal in silico scenario with variable catheter designs, a maximum coverage of 65% could be reached. As spline bunching and insufficient coverage can hardly be avoided, this has to be taken into account for interpretation of excitation patterns and development of new panoramic mapping techniques.
Cardiologists measure electric signals inside the human heart aiming at a better diagnosis and optimized therapy of atrial arrhythmias like atrial flutter and atrial fibrillation. The catheters that are used for this purpose are improving: now they are able to pick up the electric signals at up to 64 positions inside the heart simultaneously. The patterns of electric depolarization are sometimes very simple, comparable to plane waves. But in case of patients with severe atrial arrhythmias they can be quite complex: U-turns around a line of block, ectopic centres, break throughs, reentry circuits, rotors, fractionated signals and chaotic patterns are often observed. Methods of biosignal analysis can support the cardiologists in classifying the signals and extract information of high diagnostic relevance. Computer models of the electrophysiology of the human heart can serve to design better algorithms for data analysis and to test algorithms, because the ground truth is known.
G. Lenis, N. Pilia, T. Oesterlein, A. Luik, C. Schmitt, and O. Dössel. P wave detection and delineation in the ECG based on the phase free stationary wavelet transform and using intracardiac atrial electrograms as reference. In Biomedizinische Technik. Biomedical Engineering, vol. 61(1) , pp. 37-56, 2016
Abstract:
Robust and exact automatic P wave detection and delineation in the electrocardiogram (ECG) is still an interesting but challenging research topic. The early prognosis of cardiac afflictions such as atrial fibrillation and the response of a patient to a given treatment is believed to improve if the P wave is carefully analyzed during sinus rhythm. Manual annotation of the signals is a tedious and subjective task. Its correctness depends on the experience of the annotator, quality of the signal, and ECG lead. In this work, we present a wavelet-based algorithm to detect and delineate P waves in individual ECG leads. We evaluated a large group of commonly used wavelets and frequency bands (wavelet levels) and introduced a special phase free wavelet transformation. The local extrema of the transformed signals are directly related to the delineating points of the P wave. First, the algorithm was studied using synthetic signals. Then, the optimal parameter configuration was found using intracardiac electrograms and surface ECGs measured simultaneously. The reverse biorthogonal wavelet 3.3 was found to be optimal for this application. In the end, the method was validated using the QT database from PhysioNet. We showed that the algorithm works more accurately and more robustly than other methods presented in literature. The validation study delivered an average delineation error of the P wave onset of -0.32+/-12.41 ms when compared to manual annotations. In conclusion, the algorithm is suitable for handling varying P wave shapes and low signal-to-noise ratios.
Catheter ablation has become a very efficient strategy to terminate sustained cardiac arrhythmias like atrial flutter (AFlut). Identification of the optimal ablation spot, however, often proves difficult when scar from previous ablations is present. Although the application of electro-anatomical mapping systems allows to record thousands of intracardiac electrograms (EGMs) from each atrium, state-of-the-art techniques provide limited options for automatic signal processing. Goal of the presented research was the development of an algorithm to detect EGMs that present double potentials (DPs), as these often indicate functional or anatomical lines of block for cardiac excitation. Using an annotated database, we developed several features based on the morphological descriptors of DPs. These were used to train a binary decision tree which was able to detect DPs with a correct rate of over 90%.
Computer simulations and imaging of human physiology and anatomy are effectively used for diagnostics and medical treatments and are thus a focus of scientific research. Suitable representation of data is a critical aspect to achieve best results. Therefore, we developed an interactive visualization scheme especially for the representation of cardiac arrhythmias based on a conventional mobile device and virtual reality (VR) goggles (Google Cardboard and Samsung Gear VR) in combination with a game engine. The aim of this paper is to raise awareness for this new technique, evaluate its potential and pro- pose a general workflow for such a visualization environment. The use of a conventional mobile device in combination with VR goggles creates a portable and low-cost system, equipped with enough processing power and pixel density for many types of applications. The user can interact with the data through head movement or a secondary controller. As current game engines support a wide range of additional input methods and controllers, the interaction method can be customized to fit the target audience. To evaluate this method, we conducted a survey with eight typical phenomena from the field of cardiac arrhythmias. The participants were asked to rate different performance aspects on a scale from one (very bad) to five (very good). All participants (N=27) rated the performance as fluent (median=5). Furthermore, most participants (70%) ranked the overall impression as very good (median=5). On the long run, the system can be used for education and presentations as well as improved planning and guidance of medical procedures.
The novel high-density mapping system RhythmiaTM Medical (Boston Scientific, Marlborough, USA) allows a fast and automatic acquisition of intracardiac electrograms (EGMs). For recording the ORION mini-basket catheter is used. Due to the small electrode surface, the spatial averaging is smaller than with other commonly used mapping catheters. This results in a higher quality of unipolar signals. However, these are still corrupted by noise such as high frequency interference. Within this project, methods were developed and benchmarked that can be applied to detect and remove these undesired components. An algorithm was implemented to detect and eliminate artificial peaks in the spectrum of the EGM. The filtered signals showed improved quality in time domain. The performance of the spectral peak detection resulted in a median sensitivity of 92.1% and in a median positive predictive value of 91.9%.
G. Lenis, A. Kramlich, T. Oesterlein, A. Luik, C. Schmitt, and O. Dössel. Development and Benchmarking of Activity Detection Algorithms for Intracardiac Electrograms Measured During Atrial Flutter. In Workshop Biosignal 2016. Innovation bei der Erfassung und Analyse bioelektrischer und bimagnetischer Signale, pp. 5-8, 2016
The goal of this research was to classify cardiac excitation patterns during atrial fibrillation (AFib). For this purpose, virtual models of intracardiac mapping catheters were moved across in-silico cardiac tissue to extract local activation times (LATs) of each catheter electrode from simulated cardiac action potential (AP) signals. The resulting LAT patterns consisting of the LATs of all electrodes resemble patterns measured in clinical cases. The LATs represent the input information for features that were used to separate four different excitation patterns during AFib. Those four excitation patterns were plane wave, ectopic focus (spherical wave), rotor (spiral wave) and block. A feature selection algorithm was used to investigate the features concerning their power to classify the different simulated excitation patterns. The scores of the selected features were used to train and optimize a support vector machine (SVM). The optimized and cross-validated SVM was then used to classify the simulated cardiac excitation patterns. The achieved overall classification accuracy of this SVM model was 98.4 %.
M. Rottmann, T. Oesterlein, C. Reich, A. Luik, C. Schmitt, and O. Dössel. Characteristic features of electrograms of depolarization waves during atrial fibrillation. In 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2016
Abstract:
Aiming for patient specific treatment of atrial fibrillation, cardiologists in the EP-lab (ElectroPhysiology-lab) intend to identify the pattern of depolarization waves in the atria by measuring endocardial electrograms with multichannel catheters. Hereby the pattern of plane waves, ectopic foci, lines of block, or rotors are of special interest. Data acquisition is performed with various multichannel catheters, and all four patterns leave different fingerprints in the electrograms. In this work we extract features from the activation sequence in the electrograms that can support the cardiologist to identify the underlying depolarization pattern. To this end computer simulations of fundamental depolarization scenarios were carried out and the corresponding activation patterns were analyzed.
B. Verma, T. G. Oesterlein, A. Luik, C. Schmitt, and O. Dössel. Combined analysis of unipolar and bipolar electrograms for local activation time annotation near the stimulus site of paced rhythms.. In Dreilandertagung Swiss, Austrian, and German society of Biomedical Engineering, 2016
B. Verma, T. Oesterlein, A. Luik, C. Schmitt, and O. Dössel. Combined analysis of unipolar and bipolar electrograms for local activation time annotation near the stimulus site of paced rhythms. In Current Directions in Biomedical Engineering, vol. 2, 2016
Dissertations (1)
T. Oesterlein. Multichannel Analysis of Intracardiac Electrograms. Supporting Diagnosis and Treatment of Cardiac Arrhythmias. Dissertation. 2016
Abstract:
Cardiologists diagnose and treat atrial tachycardias using electroanatomical mapping systems. These can be combined with multipolar catheters to record intracardiac electrograms. Within this thesis, various signal processing techniques were implemented and benchmarked to analyze electrograms. They support the physician in diagnosis and treatment of atrial flutter and atrial fibrillation. The developed methods were assessed using simulated data and demonstrated on clinical cases.