Abstract:
BACKGROUND: The most common complication during percutaneous nephrolithotripsy (PNL) is the destruction of organ structures with extravasation of the irrigation fluid into the retroperitoneal space. Consequently, there is an increased risk of a urosepsis and a complicated therapeutic course. In this study we aimed to show that extravascular absorption could be differentiated from intravascular absorption due to their unique absorption characteristics, and that these characteristics enable a prediction of possible post-operative complications. METHODS: In a prospective study of 31 patients with PNL, ethanol was added to the irrigating fluid and blood ethanol concentration (BEC) was measured by gas chromatography during the endoscopic procedure and in the recovery room. Following the guidelines of Hahn, patients were divided into two groups: group EVA, in whom extravasation had occurred with subsequent absorption; group IVA, those with intravascular absorption. Patients' post-operative progress along with diagnoses of renal perforations or bleeding, or signs of infection or sepsis, were comprehensively listed. RESULTS: EVA was diagnosed in 19 cases, and IVA in 12 cases. Maximum BEC levels were achieved after 20 min (median) in the IVA group, and 75 min in the EVA group (P < 0.05). Apart from their significantly higher demand for opioids (P < 0.05), EVA patients had been hospitalised for a substantially and significantly longer period of time (P < 0.01). Although without statistical significance, there was a higher rate of peri-operatively confirmed complications and prolonged intensive therapeutic treatment in the extravasation group. CONCLUSION: Retroperitoneal extravasation can be identified by using ethanol monitoring during and after PNL. Afflicted patients require considerably longer hospitalisation, probably because of the additional injury to surrounding organ structures.
Abstract:
UNLABELLED: When looking for the possible cause of distortions in values measured for the determination of breath ethanol concentration (BEC) in artificially respirated patients, consideration must be given to the humidity and temperature of the gas examined. In the present study, the effects of humidified and warmed and of dry and cold air on the accuracy of a newly developed BEC measuring device, as compared to a reference model and to a conventional system, were examined in a lung model. METHODS: A temperature-regulated pediatric incubator was used containing a 10 I gas reservoir and a breath humidifier with temperature regulated water bath. This setup provided constant temperature and humidity in the gas examined during measurement period. In the 'expiration' the air was directed from the breath humidifier through a measuring unit via a 'mouthpiece' into the reference system (Alcotest 7110, Dräger Inc., Lübeck) and then out. The measuring unit consisted of sensors for the temperature and relative humidity, and of a connector for the three sample extraction systems (PES). PES I was the conventional system with a 100-cm gas-sample pipe (Alcomed 3010), PES II the newly developed system (AlcoMed 3011, both from Envitec, Wismar) with a 10-cm gas-sample pipe, and PES III with a 20-cm heated gas-sample pipe. During 'inspiration' 2 l of air was fed into the system to rinse the measuring unit and to fill the reservoir. 61 measurements were performed with dry and cold air, and 71 with humidified and warmed air, in the course of which the ethanol concentration was increased from 0 to 1.5/1000. Data were evaluated using regression analysis and the Bland & Altman method. RESULTS AND CONCLUSIONS: The constancy of the values set for temperature, relative humidity and absolute humidity in the lung model was given for all measurements. In the dry and cold air, the results from all three test systems coincided almost perfectly with the reference values. The measured BEC in the humidified and warmed air using sample-extraction systems II and III corresponded to a high degree with the reference, while in the case of PES I, only a moderate linear correlation was achieved. The temperature and humidity of the expired gas during artificial respiration influence the gas samples extracted for the purposes of BEC measurement. Newly developed sample-extraction systems II and III coincide with the reference system, even under respiration-simulated gas conditions.
Abstract:
Der Effekt von Temperatur und Luftfeuchtigkeit auf die Gasprobenentnahme zur Messung der Atem-Alkoholkonzentration (AAK) wurde zwischen 0 und 1,5‰ in einem Lungenmodell bei Messungen sowohl in trockener und kühler als auch in feuchter und angewärmter Luft untersucht. Methodik: Neben dem herkömmlichen Probenentnahmesystem (PES) mit einem 100 cm langen Schlauch (Alcomed 3010®, PES I) wurde ein weiterentwickeltes Gerät mit verbessertem Gasprobentransport (AlcoMed 3011®, beide Fa. Envitec, Wismar) und 10 cm kurzem (PES II) sowie 20 cm kurzem und auf 36°C beheiztem Gasprobenschlauch (PES III) gegenüber einem Referenzsystem mit Infrarot-Sensor (Alcotest 7110®, Fa. Dräger, Lübeck) eingesetzt. Ergebnisse: In der trockenen und kühlen Luft entsprachen die Meßergebnisse aller 3 Testsysteme fast idealerweise den Referenzwerten. Bei den Messungen in feuchter und angewärmter Luft bestand diese Übereinstimmung für das PES II und III, während das PES I keinen linearen Zusammenhang mit den Referenzwerten zeigte. Schlußfolgerung: Die Temperatur und die Luftfeuchtigkeit hat einen erheblichen Einfluß auf die AAK-Messung bei beatmeten Patienten und ist bei der Probenentnahme zu berücksichtigen.