Abstract:
Considering the fundamental difficulties to define the term 'depth of anaesthesia', a more feasible concept for assessment of 'adequacy of anaesthesia' will be explained. The basic requirements for a monitoring index are definite response, gradual scaling and independence from the anaesthetic technique used. Additionally the index should be predictive for appearance of clinical signs of an inadequate anaesthesia. Different signal-processing methods will be discussed to extract the relevant information from both the spontaneous and the evoked brain electrical activity. In this context well established methods like spectral analysis are investigated in combination with new and more sophisticated methods like bispectral analysis or wavelet decomposition. Since no single-parameter index has been defined for monitoring depth of anaesthesia, a set of EEG parameters may be more useful to take into account intra- and interindividual variability. In parallel to the description of the monitor concept, the investigation of neural nets and fuzzy techniques, in addition to or in substitution of conventional statistical methods, will be introduced. Examples are given for data quality assessment, parameter extraction and re-classification.
Abstract:
UNLABELLED: The electroencephalogram (EEG) and middle latency auditory evoked responses (MLAER) have been proposed for assessment of the depth of anesthesia. However, a reliable monitor of the adequacy of anesthesia has not yet been defined. In a multicenter study, we tested whether changes in the EEG and MLAER after a tetanic stimulus applied to the wrist could be used to predict subsequent movement in response to skin incision in patients anesthetized with 1 minimum alveolar anesthetic concentration (MAC) isoflurane in N2O. We also investigated whether the absolute values of any of these variables before skin incision was able to predict subsequent movement. After the induction of anesthesia with propofol and facilitation of tracheal intubation with succinylcholine, 82 patients received 1 MAC isoflurane (0.6%) in N2O 50% without an opioid or muscle relaxant. Spontaneous EEG and MLAER to auditory click-stimulation were recorded from a single frontoparietal electrode pair. MLAER were severely depressed at 1 MAC isoflurane. At least 20 min before skin incision, a 5-s tetanic stimulus was applied at the wrist, and the changes in EEG and MLAER were recorded. EEG and MLAER values were evaluated before and after skin incision for patients who did not move in response to tetanic stimulation. Twenty patients (24%) moved after tetanic stimulation. The changes in the EEG or MLAER variables were unable to predict which patients would move in response to skin incision. Preincision values were not different between patients who did and did not move in response to skin incision for any of the variables. MLAER amplitude increased after skin incision. We conclude that it is unlikely that linear EEG measures or MLAER variables can be of practical use in titrating isoflurane anesthesia to prevent movement in response to noxious stimulation. IMPLICATIONS: Reliable estimation of anesthetic adequacy remains a challenge. Changes in spontaneous or auditory evoked brain activity after a brief electrical stimulus at the wrist could not be used to predict whether anesthetized patients would subsequently move at the time of surgical incision.
Abstract:
BACKGROUND: The absorption of irrigation fluid during transurethral resection of the prostate (TURP) is determined primarily by hydrostatic pressure in the bladder and prostatic venous pressure. In comparison to spontaneously breathing patients, patients undergoing mechanical ventilation with positive pressure have a raised central venous pressure and a reduced venous return, both of which can influence intravascular absorption. The purpose of the prospective study was to compare the effects of general (GA) and spinal anaesthetic (SA) techniques on the perioperative absorption of irrigating fluid in patients undergoing TURP. METHODS: Forty patients undergoing TURP were randomised and assigned either to group GA or SA. Irrigating fluid absorption was traced by adding 1.5% (w/v) ethanol to the irrigating fluid. Perioperative blood ethanol concentration (BEC), haemoglobin concentration, haematocrit, serum sodium concentration and central venous pressure (CVP) were measured at 10-min intervals during TURP and at 30-min intervals while patients were recovering. Absorption routes were indexed by the BEC and changes in serum sodium concentrations. Where the BEC was greater than 0.05 mg.mL-1, absorption of irrigating fluid was assumed. For assessing the volume of irrigating fluid absorbed, the maximum BEC, the absorption rate, the area under the BEC curve (AUC), and the volumes calculated according to the Hahn nomogram (Volin) for each patient were taken into consideration. RESULTS: There were 15 cases of irrigating fluid absorption in patients receiving GA (75%), and 11 in those receiving SA (55%). CVP was significantly lower in spontaneously breathing patients with SA as compared to those with GA (P < 0.05). In patients with irrigating fluid absorption the maximum BEC (P < 0.02), as well as the rate of irrigant fluid absorption (P < 0.01), were significantly higher amongst patients receiving SA. In this group, the calculated area under the curve and the absorbed fluid volumes determined with the nomogram were significantly increased (P < 0.05). CONCLUSION: The absorption of irrigation fluid during the TURP is significantly more marked amongst spontaneously breathing patients with regional anaesthesia in comparison to patients undergoing general anaesthesia with positive pressure ventilation. The markedly lower central venous pressure before the start of irrigation should be considered as a possible cause of this effect.
Abstract:
BACKGROUND: The most common complication during percutaneous nephrolithotripsy (PNL) is the destruction of organ structures with extravasation of the irrigation fluid into the retroperitoneal space. Consequently, there is an increased risk of a urosepsis and a complicated therapeutic course. In this study we aimed to show that extravascular absorption could be differentiated from intravascular absorption due to their unique absorption characteristics, and that these characteristics enable a prediction of possible post-operative complications. METHODS: In a prospective study of 31 patients with PNL, ethanol was added to the irrigating fluid and blood ethanol concentration (BEC) was measured by gas chromatography during the endoscopic procedure and in the recovery room. Following the guidelines of Hahn, patients were divided into two groups: group EVA, in whom extravasation had occurred with subsequent absorption; group IVA, those with intravascular absorption. Patients' post-operative progress along with diagnoses of renal perforations or bleeding, or signs of infection or sepsis, were comprehensively listed. RESULTS: EVA was diagnosed in 19 cases, and IVA in 12 cases. Maximum BEC levels were achieved after 20 min (median) in the IVA group, and 75 min in the EVA group (P < 0.05). Apart from their significantly higher demand for opioids (P < 0.05), EVA patients had been hospitalised for a substantially and significantly longer period of time (P < 0.01). Although without statistical significance, there was a higher rate of peri-operatively confirmed complications and prolonged intensive therapeutic treatment in the extravasation group. CONCLUSION: Retroperitoneal extravasation can be identified by using ethanol monitoring during and after PNL. Afflicted patients require considerably longer hospitalisation, probably because of the additional injury to surrounding organ structures.