C. Nagel, M. Schaufelberger, O. Dössel, and A. Loewe. A Bi-atrial Statistical Shape Model as a Basis to Classify Left Atrial Enlargement from Simulated and Clinical 12-Lead ECGs. In Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge, vol. 13131, pp. 38-47, 2022
Abstract:
Left atrial enlargement (LAE) is one of the risk factors for atrial fibrillation (AF). A non-invasive and automated detection of LAE with the 12-lead electrocardiogram (ECG) could therefore contribute to an improved AF risk stratification and an early detection of new-onset AF incidents. However, one major challenge when applying machine learning techniques to identify and classify cardiac diseases usually lies in the lack of large, reliably labeled and balanced clinical datasets. We therefore examined if the extension of clinical training data by simulated ECGs derived from a novel bi-atrial shape model could improve the automated detection of LAE based on P waves of the 12-lead ECG. We derived 95 volumetric geometries from the bi-atrial statistical shape model with continuously increasing left atrial volumes in the range of 30 ml to 65 ml. Electrophysiological simulations with 10 different conduction velocity settings and 2 different torso models were conducted. Extracting the P waves of the 12-lead ECG thus yielded a synthetic dataset of 1,900 signals. Besides the simulated data, 7,168 healthy and 309 LAE ECGs from a public clinical ECG database were available for training and testing of an LSTM network to identify LAE. The class imbalance of the training data could be reduced from 1:23 to 1:6 when adding simulated data to the training set. The accuracy evaluated on the test dataset comprising a subset of the clinical ECG recordings improved from 0.91 to 0.95 if simulated ECGs were included as an additional input for the training of the classifier. Our results suggest that using a bi-atrial statistical shape model as a basis for ECG simulations can help to overcome the drawbacks of clinical ECG recordings and can thus lead to an improved performance of machine learning classifiers to detect LAE based on the 12-lead ECG.
J. Bender, C. Nagel, J. Fröhlich, C. Wieners, O. Dössel, and A. Loewe. A Large-scale Virtual Patient Cohort to Study ECG Features of Interatrial Conduction Block. In Current Directions in Biomedical Engineering, vol. 8(2) , pp. 97-100, 2022
Abstract:
Interatrial conduction block refers to a disturbance in the propagation of electrical impulses in the conduction pathways between the right and the left atrium. It is a risk factor for atrial fibrillation, stroke, and premature death. Clin- ical diagnostic criteria comprise an increased P wave dura- tion and biphasic P waves in lead II, III and aVF due to ret- rograde activation of the left atrium. Machine learning algo- rithms could improve the diagnosis but require a large-scale, well-controlled and balanced dataset. In silico electrocardio- gram (ECG) signals, optimally obtained from a statistical shape model to cover anatomical variability, carry the poten- tial to produce an extensive database meeting the requirements for successful machine learning application. We generated the first in silico dataset including interatrial conduction block of 9,800simulated ECG signals based on a bi-atrial statistical shape model. Automated feature analysis was performed to evaluate P wave morphology, duration and P wave terminal force in lead V1. Increased P wave duration and P wave ter- minal force in lead V1 were found for models with interatrial conduction block compared to healthy models. A wide vari- ability of P wave morphology was detected for models with in- teratrial conduction block. Contrary to previous assumptions, our results suggest that a biphasic P wave morphology seems to be neither necessary nor sufficient for the diagnosis of in- teratrial conduction block. The presented dataset is ready for a classification with machine learning algorithms and can be easily extended.
Aims Atrial flutter (AFlut) is a common re-entrant atrial tachycardia driven by self-sustainable mechanisms that cause excitations to propagate along pathways different from sinus rhythm. Intra-cardiac electrophysiological mapping and catheter ablation are often performed without detailed prior knowledge of the mechanism perpetuating AFlut, likely prolonging the procedure time of these invasive interventions. We sought to discriminate the AFlut location [cavotricuspid isthmus-dependent (CTI), peri-mitral, and other left atrium (LA) AFlut classes] with a machine learning-based algorithm using only the non-invasive signals from the 12-lead electrocardiogram (ECG). Methods and results Hybrid 12-lead ECG dataset of 1769 signals was used (1424 in silico ECGs, and 345 clinical ECGs from 115 patients—three different ECG segments over time were extracted from each patient corresponding to single AFlut cycles). Seventy-seven features were extracted. A decision tree classifier with a hold-out classification approach was trained, validated, and tested on the dataset randomly split after selecting the most informative features. The clinical test set comprised 38 patients (114 clinical ECGs). The classifier yielded 76.3% accuracy on the clinical test set with a sensitivity of 89.7%, 75.0%, and 64.1% and a positive predictive value of 71.4%, 75.0%, and 86.2% for CTI, peri-mitral, and other LA class, respectively. Considering majority vote of the three segments taken from each patient, the CTI class was correctly classified at 92%. Conclusion Our results show that a machine learning classifier relying only on non-invasive signals can potentially identify the location of AFlut mechanisms. This method could aid in planning and tailoring patient-specific AFlut treatments.
Book Chapters (1)
A. Loewe, P. Martínez Díaz, C. Nagel, and J. Sánchez. Cardiac Digital Twin Modeling. In Innovative Treatment Strategies for Clinical Electrophysiology, Springer Nature Singapore, Singapore, pp. 111-134, 2022