Abstract:
Quantifying the atrial conduction velocity (CV) reveals important information for targeting critical arrhythmia sites that initiate and sustain abnormal electrical pathways, e.g. during atrial flutter. The knowledge about the local CV distribution on the atrial surface thus enhances clinical catheter ablation procedures by localizing pathological propagation paths to be eliminated during the intervention. Several algorithms have been proposed for estimating the CV. All of them are solely based on the local activation times calculated from electroanatomical mapping data. They deliver false values for the CV if applied to regions near scars or wave collisions. We propose an extension to all approaches by including a distinct preprocessing step. Thereby, we first identify scars and wave front collisions and provide this information for the CV estimation algorithm. In addition, we provide reliable CV values even in the presence of noise. We compared the performance of the Triangulation, the Polynomial Fit and the Radial Basis Functions approach with and without the inclusion of the aforementioned preprocessing step. The evaluation was based on different activation patterns simulated on a 2D synthetic triangular mesh with different levels of noise added. The results of this study demonstrate that the accuracy of the estimated CV does improve when knowledge about the depolarization pattern is included. Over all investigated test cases, the reduction of the mean velocity error quantified to at least 25 mm/s for the Radial Basis Functions, 14 mm/s for the Polynomial Fit and 14 mm/s for the Triangulation approach compared to their respective implementations without the preprocessing step. Given the present results, this novel approach can contribute to a more accurate and reliable CV estimation in a clinical setting and thus improve the success of radio-frequency ablation to treat cardiac arrhythmias.