Abstract:
A miniaturized ceramic atmospheric plasma source for the utilization in life sciences has been developed. It is manufactured in LTCC-technology (low temperature cofired ceramic). The plasma generation is based on buried electrodes which lead to a Dielectric Barrier Discharge (DBD). The employed technology allows small feature sizes (electrode width 150 μm, barrier thickness 40μm etc.) as well as precision in the μm range, resulting in a very low power consumption of the system (approx. 5 W). Thus, the maximum temperature at the point of use can be kept below 40 °C. The flexibility of the manufacturing process (layer lamination, screen printing, patterning with picosecond laser etc.) offers additional features like robust fluidic structures (channels, chambers, gas distribution etc.) as well as the direct implementation of electronic components. The technology concept as well as the design of the ceramic parts and the handhold matched to the multi-well plate format is demonstrated. The plasma of the system can be tuned depending on the assembly of the system and the electric excitation. To prove the biocompatibility and the experimental compatibility with cell cultures (low temperature at the point of use), a method for temperature measurements on the bottom of a multi-well plate was developed. First results of the impact of the plasma source on cell cultures are presented. The effects occurring in the plasma, as well as their effects on the cell cultures (ozone formation, ultraviolet radiation etc.) are separately considered. Furthermore, the cell tolerability of the treatment with the micro-plasma source is investigated with L929 fibroblast cells.