Mathematical models of cardiac anatomy and physics provide information, which help to understand structure and behavior of the heart. Miscellaneous cardiac phenomena can only be adequately described by combination of models representing different aspects or levels of detail. Coupling of these models necessitates the definition of appropriate interfaces. Adequateness and efficiency of interfaces is crucial for efficient application of the combined models.In this work an integrated model is presented consisting of several models interconnected by interfaces. The integrated model allows the reconstruction of macroscopic electro-mechanical processes in the heart. The model comprises a three-dimensional are of left ventricular anatomy represented as truncated ellipsoid. The integrated model includes electrophysiological, tension development and elastomechanical models of myocardium at levels of single cell, proteins, and tissue patches, respectively.The model is exemplified by simulations of extracorporated left ventricle of small mammals. These simulations yield temporal distributions of electrophysiological parameters as well as descriptions of electrical propagation and mechanical deformation. The simulations show characteristic macroscopic ventricular function resulting from the interplay between cellular electrophysiology, electrical excitation propagation, tension development, and mechanical deformation.
Books (1)
O. Dössel, M. Reumann, M. Mohr, and A. Diez. Vorlesung, Übung und Tutorium im koordinierten Zusammenspiel. Ein Lehr-/Lernpaket schnüren - Grundlagenveranstaltung. Berendt, Brigitte, 2006.
M. B. Mohr, F. B. Sachse, O. Dössel, G. Seemann, and C. D. Werner. Vergleich von mikroskopischen und makroskopischen Modellen der Kraftentwicklung und Deformation im Myokard. In Biomedizinische Technik, vol. 46-1, pp. 524-525, 2001
O. Dössel, M. Reumann, M. Mohr, and A. Dietz. Assessing learning progress and teaching quality in large groups of students. In Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp. 2877-2880, 2008
Abstract:
The classic tool of assessing learning progress are written tests and assignments. In large groups of students the workload often does not allow in depth evaluation during the course. Thus our aim was to modify the course to include active learning methods and student centered teaching. We changed the course structure only slightly and established new assessment methods like minute papers, short tests, mini-projects and a group project at the end of the semester. The focus was to monitor the learning progress during the course so that problematic issues could be addressed immediately. The year before the changes 26.76 % of the class failed the course with a grade average of 3.66 (Pass grade is 4.0/30 % of achievable marks). After introducing student centered teaching, only 14 % of students failed the course and the average grade was 3.01. Grades were also distributed more evenly with more students achieving better results. We have shown that even in large groups of students with > 100 participants student centered and active learning is possible. Although it requires a great work overhead on the behalf of the teaching staff, the quality of teaching and the motivation of the students is increased leading to a better learning environment.
A computer model of the human heart is presented, that starts with the electrophysiology of single myocardial cells including all relevant ion channels, spans the de- and repolarization of the heart including the generation of the Electrocardiogram (ECG) and ends with the contraction of the heart that can be measured using 4D Magnetic Resonance Imaging (MRI). The model can be used to better understand physiology and pathophysiology of the heart, to improve diagnostics of infarction and arrhythmia and to enable quantitative therapy planning. It can also be used as a regularization tool to gain better solutions of the ill-posed inverse problem of ECG. Movies of the evolution of electrophysiology of the heart can be reconstructed from Body Surface Potential Maps (BSPM) and MRI, leading to a new non-invasive medical imaging technique.
Cardiac electro-mechanical models are valuable tools to gain insights in physiology and pathophysiology of the heart. Progressive models can be created by fusion of various basic models. In this work biventricular models of cardiac electro-mechanics were developed by fusion of anatomical, electrical, and mechanical models. The importance of anatomical modeling was researched by inclusion of two different anatomical models, i.e. an analytical and a magnetic resonance diffusion tensor imaging based model. The fused models were applied in simulations of physiological behavior and results of these were analyzed. Significant difference of deformation were found, which can be attributed to the anatomical models. The analysis emphasized the importance of appropriate anatomical modeling for simulations of cardiac mechanics.
K. Chaisaowong, F. B. Sachse, O. Dössel, G. Seemann, and M. Mohr. Modeling of human cardiac force development: Quantitative description from myofilament to myocardium. In Biomedizinische Technik, vol. 48-1, pp. 466-467, 2003
F. B. Sachse, G. Seemann, K. Chaisaowong, and M. B. Mohr. Modeling of electro-mechanics of human cardiac myocytes: Parameterization with numerical minimization techniques. In Proc. IEEE EMBS, pp. 2810-2813, 2003
M. B. Mohr. A hybrid deformation model of ventricular myocardium. Universität Karlsruhe (TH). Dissertation. 2006
Student Theses (1)
M. B. Mohr. Vergleich von mikroskopischen und makroskopischen Modellen der Deformation im Myokard. Institute of Biomedical Engineering, Universität Karlsruhe (TH). Diplomarbeit. 2001