Es wird eine Methode beschrieben, wie medizinische Bilder des Herzens modellbasiert mit EKG-Daten verknüpft werden können, um damit zu einer spezifischen Diagnostik und zu einer besseren Therapieplanung in der Kardiologie zu gelangen. Zunächst wird aus MRT- oder CT-Bildern des Patienten die Geometrie seines Herzens ermittelt. Elektrokardiographische Messungen an der Körperoberfläche (EKG oder Body Surface Potential Mapping) und aus dem Inneren des Herzens (intracardial mapping) werden aufgenommen und die Orte der Messung in den Bilddatensatz eingetragen (registration). Ein elektrophysiologisches Computermodell vom Herzen des Patienten wird mit Hilfe der elektrophysiologischen Messdaten iterativ angepasst. Schließlich entsteht im Computer ein virtuelles Herz des Patienten, welches sowohl die Geometrie als auch die Elektrophysiologie wiedergibt. Ein Modell der Vorhöfe hat beispielsweise das Potenzial, die Ursachen von Vorhofflimmern zu erkennen und die Radiofrequenz-Ablationsstrategie zu optimieren. Ein Modell der Ventrikel des Herzens kann helfen, genetisch bedingte Rhythmusstörungen besser zu verstehen oder auch die Parameter bei der kardialen Resynchronisationstherapie zu optimieren. Die Modellierung des Herzens mit einem Infarktgebiet könnte die elektrophysiologischen Auswirkungen des Infarktes beschreiben und die Risikostratifizierung für gefährliche ventrikuläre Arrhythmien unterstützen oder die Erfolgsrate bei ventrikulären Ablationen erhöhen.
Conference Contributions (2)
R. Miri, O. Dössel, M. Reumann, D. U. J. Keller, and D. Farina. Comparison of the electrophysiologically based optimization methods with different pacing parameters in patient undergoing resynchronization treatment. In Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, vol. 2008, pp. 1741-1744, 2008
Abstract:
Many studies conducted on patients suffering from congestive heart failure have shown the efficacy of cardiac resynchronization therapy (CRT). The presented research investigates an off-line optimization algorithm based on different electrode positioning and timing delays. A computer model of the heart was used to simulate left bundle branch block (LBBB), myocardial infarction (MI) and reduction of intraventricular conduction velocity in order to customize the patient symptom. The optimization method evaluates the error between the healthy heart and pathology with/without pacing in terms of activation time and QRS length. Additionally, a torso model of the patient is extracted to compute the body surface potential map (BSPM) and to simulate the ECG with Wilson leads to validate the results obtained by the electrophysiological heart model optimization.
After mathematical modeling of the healthy heart now modeling of diseases comes into the focus of research. Modeling of arrhythmias already shows a large degree of realism. This offers the chance of more detailed diagnosis and computer assisted therapy planning. Options for genetic diseases (channelopathies like Long-QT-syndrome), infarction and infarction-induced ventricular fibrillation, atrial fibrillation (AF) and cardiac resynchronization therapy are demonstrated.