Abstract:
Objective. 3D-localization of gamma sources has the potential to improve the outcome of radio-guided surgery. The goal of this paper is to analyze the localization accuracy for point-like sources with a single coded aperture camera. Approach. We both simulated and measured a point-like 241Am source at 17 positions distributed within the field of view of an experimental gamma camera. The setup includes a 0.11mm thick Tungsten sheet with a MURA mask of rank 31 and pinholes of 0.08 mm in diameter and a detector based on the photon counting readout circuit Timepix3. Two methods, namely an iterative search including either a symmetric Gaussian fitting or an exponentially modified Gaussian fitting (EMG) and a center of mass method were compared to estimate the 3D source position. Main results. Considering the decreasing axial resolution with source-to-mask distance, the EMG improved the results by a factor of 4 compared to the Gaussian fitting based on the simulated data. Overall, we obtained a mean localization error of 0.77 mm on the simulated and 2.64 mm on the experimental data in the imaging range of 20−100 mm. Significance. This paper shows that despite the low axial resolution, point-like sources in the nearfield can be localized as well as with more sophisticated imaging devices such as stereo cameras. The influence of the source size and the photon count on the imaging and localization accuracy remains an important issue for further research.
Abstract:
Purpose: Handheld gamma cameras with coded aperture collimators are under inves- tigation for intraoperative imaging in nuclear medicine. Coded apertures are a promis- ing collimation technique for applications such as lymph node localization due to their high sensitivity and the possibility of 3D imaging. We evaluated the axial resolutionand computational performance of two reconstruction methods.Methods: An experimental gamma camera was set up consisting of the pixelated semiconductor detector Timepix3 and MURA mask of rank 31 with round holesof 0.08 mm in diameter in a 0.11 mm thick Tungsten sheet. A set of measurements was taken where a point-like gamma source was placed centrally at 21 different positions within the range of 12–100 mm. For each source position, the detector image was reconstructed in 0.5 mm steps around the true source position, resulting in an image stack. The axial resolution was assessed by the full width at half maximum (FWHM) of the contrast-to-noise ratio (CNR) profile along the z-axis of the stack. Two reconstruction methods were compared: MURA Decoding and a 3D maximum likeli- hood expectation maximization algorithm (3D-MLEM).Results: While taking 4400 times longer in computation, 3D-MLEM yielded a smaller axial FWHM and a higher CNR. The axial resolution degraded from 5.3 mm and 1.8 mm at 12 mm to 42.2 mm and 13.5 mm at 100 mm for MURA Decoding and 3D-MLEM respectively.Conclusion: Our results show that the coded aperture enables the depth estimation of single point-like sources in the near field. Here, 3D-MLEM offered a better axial reso- lution but was computationally much slower than MURA Decoding, whose reconstruc- tion time is compatible with real-time imaging.
Abstract:
Imaging distributions of radioactive sources plays a substantial role in nuclear medicine as well as in monitoring nuclear waste and its deposit. Coded Aperture Imaging (CAI) has been proposed as an alternative to parallel or pinhole collimators, but requires image reconstruction as an extra step. Multiple reconstruction methods with varying run time and computational complexity have been proposed. Yet, no quantitative comparison between the different reconstruction methods has been carried out so far. This paper focuses on a comparison based on three sets of hot-rod phantom images captured with an experimental γ-camera consisting of a Tungsten-based MURA mask with a 2 mm thick 256 × 256 pixelated CdTe semiconductor detector coupled to a Timepix© readout circuit. Analytical reconstruction methods, MURA Decoding, Wiener Filter and a convolutional Maximum Likelihood Expectation Maximization (MLEM) algorithm were compared to data-driven Convolutional Encoder-Decoder (CED) approaches. The comparison is based on the contrast-to-noise ratio as it has been previously used to assess reconstruction quality. For the given set-up, MURA Decoding, the most commonly used CAI reconstruction method, provides robust reconstructions despite the assumption of a linear model. For single image reconstruction, however, MLEM performed best of all analytical reconstruction methods, but took on average 45 times longer than MURA Decoding. The fastest reconstruction method is the Wiener Filter with a run time 4.3 times faster compared to MURA Decoding and a mediocre quality. The CED with a specifically tailored training set was able to succeed the most commonly used MURA decoding on average by a factor between 1.37 and 2.60 and an equal run time.
Abstract:
Stroke is the third most common cause of death in western society and its number is in- creasing due to demographic change. Mechanical thrombectomy is a standard therapy for ischemic stroke patients, where the blood clot is removed in a minimal-invasive surgery. In addition to thrombectomy, the induction of selective therapeutic hypothermia through direct blood cooling was suggested, as it provides neuroprotection to the brain. For realistic simulations of cerebral temperature distribution, the finely meshed brain model Colin27 was coupled to a pre-existing hemodynamic model. The cerebrum is separated from the brainstem and cerebellum by manual segmentation of the MRI data. The Brain Vasculature Database was used in combination with a modified region growing algorithm and three-dimensional probability maps to produce perfusion territories of the major cerebral arteries. The next step was to subdivide the regions of the major cerebral arteries into terminal regions to assign each terminal artery from the hemodynamic model to one brain region. Vascularization patterns from literature and region growing were used to identify those terminal regions. A coarser version of the brain was set up for temporal simulation in COMSOL and an ischemic stroke was simulated by entirely blocking the blood flow in the right MCA M1 seg- ment. The cooling effect in the perfusion territories of the major cerebral arteries, including the impact to the body core temperature were analyzed. The simulations show, that direct blood cooling in the right Common Carotid Artery decreases the spatial average temperature in the affected hemisphere by 1.7◦C after 30 minutes of cooling, while the contralateral hemisphere stays nearly unaffected. The decrease in systemic body is insignificant. The results of this thesis indicated that mild therapeutic hypothermia is achievable in the penumbra through a cooling catheter, while the effect on the rest of the body was minimized. The simulation help to better understand and predict how selective brain cooling can be applied in stroke therapy.