Abstract:
Chronic kidney disease (CKD) affects more than 30 million patients in the European Union. CKD causes alterations in the extracellular plasma electrolyte concentrations, which affect cardiac electrophysiology. A total of 25% of all deaths of CKD patients are due to sudden cardiac death (SCD). Until recently, ventricular fibrillation was assumed to be the main reason. In a 2015 study, Wong et al. observed bradycardia and asystole as the predominant mechanisms of SCD in patients with CKD. This shows that the influence of electrolyte changes on the underlying mechanisms of pacemaking in the sinoatrial node (SAN) needs to be better understood. In this work, we have updated the computational model of the human SAN given by Fabbri et al. and investigated the CKD-induced change of [Ca2+]o (0.6-3mM), [K+]o (3-9mM) and [Na+]o (120-150mM) on pacemaking. [Ca2+]o had the most dominant effects on SAN function. Low [Ca2+]o caused severe bradycardia in the model (down to 17 bpm) for 0.6 mM. A critical concentration range of calcium in the subspace [Ca2+]sub was identified as the possible underlying mechanism for pacemaking. For increasing [Ca2+]o, the heart rate (HR) increased, resulting in 142 bpm for the highest calcium concentration. The effect of [K+]o variation was similar to the one for [Ca2+]o, but caused less pronounced change. The resultant changes due to variation of [Na+]o were relatively small. In this work, several potential mechanisms for SCD in CKD patients could be identified. The low HR for low [Ca2+]o is seen as a possible link to the observed bradycardia in CKD patients. The findings in this work could lead to a better surveillance of [Ca2+]o in hemodialysis patients, and therefore to a decrease in the SCD rate.