Abstract:
Chronic kidney disease appears worldwide. In the United States, the number of patients suffering from kid- ney failure doubled from 1998 to 2010. A common treat- ment for these patients is haemodialysis. However, the frequency of deaths caused by cardiovascular diseases is up to 10% to 30% higher in patients undergoing dialysis than in the general population. To analyse the underly- ing effects and for a possible risk prediction, a continuous monitoring of the ionic concentrations that are influenced by dialysis is desired. In this work, a method for the re- construction of the ionic concentrations of calcium and potassium from the ECG is proposed. In a first step, 91 monodomain simulations with the ten Tusscher ventricular cell model were performed for different extracellular ionic concentrations. From there, a standard 12-lead ECG was extracted. Calcium and potassium changes yielded ECGs clearly differing in amplitude and morphology. In a second step, the simulated ECG signals were used for reconstruc- ting the ionic concentrations directly from the ECG. Fea- tures were extracted from the signals designed to describe changes caused by varied ionic concentrations. The in- verse problem, i.e. coming back from the ECG features to the ionic concentrations was solved by regression with an artificial neural network. Results for potassium estimation yield an error of 0.00±0.28 mmol/l (mean±standard de- viation) calculated with 7-fold cross validation. The esti- mation error for calcium was 0.00±0.08 mmol/l. Although these results underline the suitability of the method, the used ECGs differed from the observed in a clinical envi- ronment. However, simulations allow an evaluation un- der controlled conditions of a particular effect that was intended to be investigated. As the application to clinical data is yet missing, this study can be seen as a proof of concept showing that an artificial neural network is capa- ble of exactly estimating potassium and calcium concen- trations from ECG features. 1. Introduction Haemodialysis therapy is a common treatment method for patients suffering from chronic kidney disease (CKD) in the terminal stage. The amount of people in the United States suffering from kidney failure increased from 320,000 in 1998 to 650,000 in 2010. The frequency of deaths caused by cardiovascular events within the dialysis patient group is up to 10% to 30% higher than in gene- ral population [1]. Patients suffering from end-stage CKD experience high variations of blood electrolyte concentra- tions. These can directly influence the functioning of the heart. Thus, research on cardiovascular links could im- prove therapy and risk stratification. One tool which is capable of capturing the electrophysiological properties of the heart in a non-invasive way is the electrocardiogram (ECG). It is known, that electrolyte concentrations of po- tassium (K+) and calcium (Ca2+) affect the ECG [2]. Un- til now, a determination of the concentrations is connec- ted to a blood test. Hence, continuous monitoring of the ionic concentration is impracticable. However, the ECG as a continuous, non-invasive monitoring tool could shed a light on the relation between heart diseases and changes in the ionic concentration particularly after leaving the strictly supervised clinical area where dialysis takes place, i.e allowing a monitoring at home. Articles have been pub- lished showing that the reconstruction of extracellular K+ concentration can be done using just one feature from the ECG with a quadratic regression [3]. In this study, we tried to estimate both K+ and Ca2+ concentrations from the ECG. Therefore, we examined simulated ECGs at dif- ferent concentration levels and designed features descri- bing the observed changes in the ECG. A subset of these was used in connection with a machine learning method to reconstruct the concentrations. 2. Methods 2.1. Simulations A total number of 91 computer simulations of the car- diac electrophysiology were performed at whole heart