Abstract:
Atrial fibrillation (AF) is a common arrhythmia with progressive nature. This progression is partly caused by AF itself by modifying amongst others the electrophysiological properties of the myocytes. These changes are referred to as electrical remodeling and were integrated in a computational model of human atrial myocytes in this work.In particular, the maximum conductivities of Ito, IK1, IKs, IKur, ICa,L, INa,Ca, and the Ca2+ leak current from the sarcoplasmic reticulum, as well as the cell capacitance were altered. In an additional setup, the influence of potential gap junction remodeling was investigated.Wavelength was reduced from 225 mm to 110 mm, respectively 92 mm when considering gap junction remodeling at a basic cycle length of 400 ms. Action potential morphology was changed from spike-and-dome to a more triangular repolarization phase. However, our results show that including IKur remodeling prevents the plateau phase from disappearing completely.