Abstract:
The early detection of myocardial ischemia is an essential lever for its successful treatment. We investigated an ECG monitoring system with 3 electrodes. Optimal electrode positions are determined using a cellular automaton. The spatially heterogeneous effects of myocardial ischemia were modeled by altering 4 electrophysiological parameters: action potential amplitude and duration, conduction velocity as well as resting membrane voltage. Both, transmural heterogeneity and the influence of the border zone were considered in the simulations on three patient models. The detection of myocardial ischemia is based on ST segment deviation from the physiological case. The signals used to find the best electrode positions comprise ischemic regions with different transmural extents in all 17 AHA segments. We show which ischemic ECGs can be detected given a realistic signal-to-noise ratio, false positive rate and maximum response time of the system.