Abstract:
Ventricular ectopic beats (VEBs) trigger a characteristic response of the heart called heart rate turbulence (HRT). The HRT can be used to predict sudden cardiac death in patients with a history of myocardial infarction. In this work, we present a reliable algorithm to detect and classify ectopic beats. Every electrocardiogram (ECG) is processed with innovative filtering techniques, artifact detection methods, and a robust multichannel analysis to produce accurate annotation results. For the classification task, a support vec- tor machine was used. Furthermore, a new approach to the analysis of HRT is proposed. The HRT is interpreted as the response of a second-order system to an external perturbation. The system theoretical parameters were estimated. The influence of VEB on the morphology of subsequent T waves was also analyzed. A strong influence was detected in the study with 14 patients experiencing frequent VEB. The evolution of the morphology of the T wave with every new beat was studied, and it could be concluded that an exponential shape underlies this dynamic process and was called morphological heart rate turbulence (MHRT). Parameters were defined to quantify the MHRT. The analysis of the MHRT could help to understand the influence of an ectopic beat on the repolarization processes of the heart and more accurately stratify the risk of sudden cardiac death.