A modular multichannel SQUID-system, in which every single channel can be optimized or replaced individually, is presented. The DC-SQUIDs based on the materials NbN/MgO are prepared by thin film technology and show noise values below 10μΦ0/√Hz. A simplified way of coupling the modulation and feedback current directly to the coupling coil is realized The complete SQUID module including the superconducting shield was miniaturized down to a diameter of 5mm. The gradiometers are wire wound and an as made balancing better than 10−3 is achieved. The cryogenic system was optimized with respect to low vibrations and low helium boil off rate. Simple conductive paint with precisely adjusted surface resistivity is used for RF-shielding. The complete SQUID-electronic of one channel has been realized on one single board and uses a new bias modulation scheme to completely suppress intrinsic 1/f noise. The noise level of the complete system is below 10fT/√Hz. Biomagnetic measurements of the human heart and brain are presented. Single current dipole reconstructions and current density imaging techniques can be used to find the underlying sources. Using a special coil positioning system an overlay of the functional current images with morphological MR-images can be carried out.
Current sources in the human body can be localized by measuring the biomagnetic fields with multichannel SQUID systems. Important system aspects are the noise level, the ambient field suppression, the dynamic range, the reliability, the number of channels, and the arrangement of gradiometers. From the users point of view the most important quality factor is the accuracy with which a current dipole can be localized. A test procedure is proposed to determine the localization power of the system. A 31-channel-SQUID system is presented together with the results of the test. The crucial parts of the system determining the accuracy are pointed out.
Papers from the 4th International Conference on Superconducting and Quantum Effect Devices and their Applications held in Berlin, Germany, June 18-21, 1991.Detailliertere InformationenSuperconducting devices and their applications: proceedings of the 4th international conference SQUID '91 (session on superconducting devices), Berlin, Fed. Rep. of Germany, June 18-21, 1991Von Hans Koch, H. LübbigMitwirkende Personen Hans KochEdition: illustratedVeröffentlicht von Springer-Verlag, 1992Original von University of MichiganDigitalisiert am 10. Dez. 2007ISBN 0387553967, 9780387553962603 Seiten
A modular multichannel superconducting quantum interference device (SQUID) system, in which every channel can be optimized or replaced individually, was further improved. The number of channels was increased to 31. The noise level is better than 10 fT/√Hz. A novel way of RF shielding using conductive paint avoids degradation of the SQUID characteristics due to RF interference without introducing significant extra noise, so that the system works without any Faraday cage. A simplified way of coupling the modulation and feedback signal directly to the SQUID was developed and tested successfully. The SQUID module with superconducting connections to the gradiometer and its superconducting shield was miniaturized to an outer diameter of 5 mm, so that it can be placed near the gradiometer without introducing significant unbalance. Tests have demonstrated that the accuracy of the system with respect to the localization of a single current dipole is better than 2 mm