Abstract:
The application of machine learning approachesin medical technology is gaining more and more attention.Due to the high restrictions for collecting intraoperative patientdata, synthetic data is increasingly used to support the trainingof artificial neural networks. We present a pipeline to createa statistical shape model (SSM) using 28 segmented clinicalliver CT scans. Our pipeline consists of four steps: data pre-processing, rigid alignment, template morphing, and statisti-cal modeling. We compared two different template morphingapproaches: Laplace-Beltrami-regularized projection (LBRP)and nonrigid iterative closest points translational (N-ICP-T)and evaluated both morphing approaches and their corre-sponding shape model performance using six metrics. LBRPachieved a smaller mean vertex-to-nearest-neighbor distances(2.486±0.897 mm) than N-ICP-T (5.559±2.413 mm). Gen-eralizationand specificity errors for LBRP were consistentlylower than those of N-ICP-T. The first principal componentsof the SSM showed realistic anatomical variations. The perfor-mance of the SSM was comparable to a state-of-the-art model.