A modular multichannel SQUID-system, in which every single channel can be optimized or replaced individually, is presented. The DC-SQUIDs based on the materials NbN/MgO are prepared by thin film technology and show noise values below 10μΦ0/√Hz. A simplified way of coupling the modulation and feedback current directly to the coupling coil is realized The complete SQUID module including the superconducting shield was miniaturized down to a diameter of 5mm. The gradiometers are wire wound and an as made balancing better than 10−3 is achieved. The cryogenic system was optimized with respect to low vibrations and low helium boil off rate. Simple conductive paint with precisely adjusted surface resistivity is used for RF-shielding. The complete SQUID-electronic of one channel has been realized on one single board and uses a new bias modulation scheme to completely suppress intrinsic 1/f noise. The noise level of the complete system is below 10fT/√Hz. Biomagnetic measurements of the human heart and brain are presented. Single current dipole reconstructions and current density imaging techniques can be used to find the underlying sources. Using a special coil positioning system an overlay of the functional current images with morphological MR-images can be carried out.
Current sources in the human body can be localized by measuring the biomagnetic fields with multichannel SQUID systems. Important system aspects are the noise level, the ambient field suppression, the dynamic range, the reliability, the number of channels, and the arrangement of gradiometers. From the users point of view the most important quality factor is the accuracy with which a current dipole can be localized. A test procedure is proposed to determine the localization power of the system. A 31-channel-SQUID system is presented together with the results of the test. The crucial parts of the system determining the accuracy are pointed out.
O. Dössel, B. David, M. Fuchs, J. Krüger, W. H. Kullmann, and K. M. Ludeke. A modular approach to multichannel magnetometry. In Clinical Physics and Physiological Measurement : an Official Journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics, vol. 12 Suppl B, pp. 75-79, 1991
Abstract:
A 19-channel SQUID system for biomagnetic measurements has been developed. This system differs from standard instruments in its modular approach. Various gradiometers can be coupled to the SQUIDs, the cryogenic system allows the exchange of single channels and the electronics is based on a cassette system. Problems with thermal insulation, vibrations of the gradiometers and tilted gradiometer geometries are discussed and solutions are presented.
Book Chapters (2)
O. Dössel, B. David, M. Fuchs, J. Krüger, and H. A. Wischmann. Simple test procedures for multichannel squid systems. In Biomagnetism: fundamental research and clinical applications; proceedings of the 9th International Conference on Biomagnetism (BIOMAG '93 Vienna), Amsterdam, Elsevier/IOS Press, pp. 515-520, 1995
A modular multichannel superconducting quantum interference device (SQUID) system, in which every channel can be optimized or replaced individually, was further improved. The number of channels was increased to 31. The noise level is better than 10 fT/√Hz. A novel way of RF shielding using conductive paint avoids degradation of the SQUID characteristics due to RF interference without introducing significant extra noise, so that the system works without any Faraday cage. A simplified way of coupling the modulation and feedback signal directly to the SQUID was developed and tested successfully. The SQUID module with superconducting connections to the gradiometer and its superconducting shield was miniaturized to an outer diameter of 5 mm, so that it can be placed near the gradiometer without introducing significant unbalance. Tests have demonstrated that the accuracy of the system with respect to the localization of a single current dipole is better than 2 mm
Dissertations (1)
M. W. Krüger. Personalized Multi-Scale Modeling of the Atria : Heterogeneities, Fiber Architecture, Hemodialysis and Ablation Therapy. KIT Scientific Publishing. Dissertation. 2013
Abstract:
This book targets three fields of computational multi-scale cardiac modeling. First, advanced models of the cellular atrial electrophysiology and fiber orientation are introduced. Second, novel methods to create patient-specific models of the atria are described. Third, applications of personalized models in basic research and clinical practice are presented. The results mark an important step towards the patient-specific model-based atrial fibrillation diagnosis, understanding and treatment.
Student Theses (2)
M. W. Krüger. Modellierung des Einflusses der Hämodynamik auf die Temperaturverteilung während extrakorporaler Zirkulation. Universität Karlsruhe (TH). Diplomarbeit. 2008
M. W. Krüger. Erhöhung der transmuralen Dispersion der Repolarisation durch epikardiale Stimulation eines virtuellen linken Ventrikels. Institut für Biomedizinische Technik, Universität Karlsruhe (TH). . 2007