Estimating cardiac active tension from wall motion—An inverse problem of cardiac biomechanics.

In

Causes of altered ventricular mechanics in hypertrophic cardiomyopathy: an in-silico study.

In

T. Gerach, S. Schuler, J. Fröhlich, L. Lindner, **E. Kovacheva**, R. Moss, E. M. Wülfers, G. Seemann, C. Wieners, and A. Loewe.

Electro-Mechanical Whole-Heart Digital Twins: A Fully Coupled Multi-Physics Approach.

In*Mathematics*, vol. 9(11) , pp. 1247, 2021

Electro-Mechanical Whole-Heart Digital Twins: A Fully Coupled Multi-Physics Approach.

In

J. Brenneisen, A. Daub, T. Gerach, **E. Kovacheva**, L. Huetter, B. Frohnapfel, O. Dössel, and A. Loewe.

Sequential Coupling Shows Minor Effects of Fluid Dynamics on Myocardial Deformation in a Realistic Whole-Heart Model..

In*Frontiers in cardiovascular medicine*, vol. 8, pp. 768548, 2021

Sequential Coupling Shows Minor Effects of Fluid Dynamics on Myocardial Deformation in a Realistic Whole-Heart Model..

In

Optimization Framework to Identify Constitutive Law Parameters of the Human Heart.

In

A Method for Pressure-Volume-Based Parameter Identification for a Passive Constitutive Model of Myocardium.

In

Electro-Mechanical Delay in the Human Heart: A Study on a Simple Geometry.

In

J. Brenneisen, S. Schuler, **E. Kovacheva**, T. Gerach, O. Dössel, and A. Loewe.

Influence of Geometrical Properties for the Calculation of a Pressure-Free Whole Heart Geometry.

In*14th WCCM-ECCOMAS Congress 2020*, pp. 1-9, 2021

Influence of Geometrical Properties for the Calculation of a Pressure-Free Whole Heart Geometry.

In

J. Brenneisen, A. Daub, **E. Kovacheva**, T. Gerach, L. Hütter, B. Frohnapfel, O. Dössel, and A. Loewe.

A sequential coupling approach for fluid-structure interaction in a patient specific whole heart geometry.

In*iHEART Congress – Modelling the Cardiac Function*, 2021

A sequential coupling approach for fluid-structure interaction in a patient specific whole heart geometry.

In

J. Brenneisen, **E. Kovacheva**, T. Gerach, A. Daub, L. Hütter, B. Frohnapfel, O. Dössel, and A. Loewe.

Characterization of the Fluid Dynamic Pressure Field in the Human Heart as a Basis for Coupled Fluid-Structure Simulations.

In*BMT 2020*, vol. Poster Session, pp. 259, 2020

Characterization of the Fluid Dynamic Pressure Field in the Human Heart as a Basis for Coupled Fluid-Structure Simulations.

In

T. Gerach, S. Schuler, **E. Kovacheva**, O. Doessel, and A. Loewe.

Consequences of Using an Orthotropic Stress Tensor for Left Ventricular Systole.

In*2020 Computing in Cardiology Conference (CinC)*, vol. 47, 2020

Consequences of Using an Orthotropic Stress Tensor for Left Ventricular Systole.

In

T. Fritz, **E. Kovacheva**, G. Seemann, O. Dössel, and A. Loewe.

The inverse problem of cardiac mechanics - estimation of cardiac active stress from endocardial motion tracking.

In*Computational & Mathematical Biomedical Engineering Proceedings*, vol. 1, pp. 91-95, 2019

The inverse problem of cardiac mechanics - estimation of cardiac active stress from endocardial motion tracking.

In

A. Müller, **E. Kovacheva**, S. Schuler, O. Dössel, and L. Baron.

Effects of local activation times on the tension development of human cardiomyocytes in a computational model.

In*Current Directions in Biomedical Engineering*, vol. 4(1) , pp. 247-250, 2018

Effects of local activation times on the tension development of human cardiomyocytes in a computational model.

In

Model Based Estimation of the Elastomechanical Properties of the Human Heart.

Karlsruher Institut für Technologie (KIT). Dissertation. 2021