Abstract:
The heart rate variability (HRV) is a measure which is commonly used to assess sympathetic and parasympathetic auto-nomic function. It is well known, that respiration can have a strong influence on HRV. Especially, a phenomenon called Respiratory Sinus Arrythmia (RSA) modulates the RR intervals and is a major contributor to the HRV. The interpreta-tion of common HRV parameters can be ambiguous due to different respiration rates and patterns. To assess this ambi-guity, the coupling of RSA on HRV was quantified and the HRV parameters were compared during different respirato-ry states.A pilot study with five healthy subjects was performed. A three lead ECG was acquired and the respiration was estimat-ed by measuring the aeration of the lungs using the PulmoVista 500 by Dräger. This device uses Electrical Impedance Tomography (EIT) to monitor impedance changes due to the changing amount of air within the lungs during respira-tion. The subjects were asked to breath at controlled respiration rates of 8, 15 and 24 breaths per minute as well as spon-taneously for 1 min each. In addition, to analyze HRV during apnoic phases without any respiration, the subjects were asked to hold their breath for 40s at end-inspiration and end-expiration. After preprocessing of the ECG and the respiration signal, the coupling between the measured respiration and the RR intervals was quantified using the Granger causality. If significant coupling was present, the HRV was separated from its respiratory influence using an ARMAX model. The measured respiration hereby formed the exogeneous input to the filter. Finally, common HRV parameters were calculated for the original and the decoupled RR intervals.We showed, that coupling strength depends on respiratory rates, which might complicate HRV interpretation. Moreo-ver, the coupling is decreased during spontaneous breathing in comparison to controlled respiration. Additionally we found, that HRV parameters during apnoic phases differ from decoupled HRV parameters during spontaneous or con-trolled respiration.