D. U. J. Keller, F. M. Weber, G. Seemann, and O. Dössel. Ranking the Influence of Tissue Conductivities on Forward-Calculated ECGs. In IEEE Transactions on Biomedical Engineering, vol. 57(7) , pp. 1568-1576, 2010
Abstract:
This paper examined the effects that different tissue conductivities had on forward-calculated ECGs. To this end, we ranked the influence of tissues by performing repetitive forward calculations while varying the respective tissue conductivity. The torso model included all major anatomical structures like blood, lungs, fat, anisotropic skeletal muscle, intestine, liver, kidneys, bone, cartilage, and spleen. Cardiac electrical sources were derived from realistic atrial and ventricular simulations. The conductivity rankings were based on one of two methods: First, we considered fixed percental conductivity changes to probe the sensitivity of the ECG regarding conductivity alterations. Second, we set conductivities to the reported minimum and maximum values to evaluate the effects of the existing conductivity uncertainties. The amplitudes of both atrial and ventricular ECGs were most sensitive for blood, skeletal muscle conductivity and anisotropy as well as for heart, fat, and lungs. If signal morphology was considered, fat was more important whereas skeletal muscle was less important. When comparing atria and ventricles, the lungs had a larger effect on the atria yet the heart conductivity had a stronger impact on the ventricles. The effects of conductivity uncertainties were significant. Future studies dealing with electrocardiographic simulations should consider these effects.
Simulations of the electrophysiological behavior of the heart improve the comprehension of the mechanisms of the cardiovascular system. Furthermore, the mathematical modeling will support diagnosis and therapy of patients suffering from heart diseases. In this paper, the chain of modeling of the electrical function in the heart is described. The components are explained briefly, namely modeling of cardiac geometry, reconstructing the cardiac electrophysiology and excitation propagation. Additionally, the mathematical methods allowing to implement and solve these models are outlined. The three recently more investigated cases atrial fibrillation, ischemia and long-QT syndrome are described and show how cardiac modeling can support cardiologists in answering their open questions.
Conference Contributions (5)
D. U. J. Keller, A. Bohn, O. Dössel, and G. Seemann. In-silico Evaluation of Beta-Adrenergic Effects on the Long-QT Syndrome. In Proceedings Computing in Cardiology, vol. 37, pp. 825-828, 2010
Abstract:
Patients suffering from the congenital Long-QT syndrome have been reported to react highly sensitive to the presence of beta-adrenergic agents that are produced by the sympathetic nervous system. In this work we used an anisotropic and electrophysiologically heterogeneous in- silico model to reproduce wedge experiments in which the Long-QT syndrome was induced pharmacologically. The integration of an intracellular signaling cascade allowed the prediction of the effects of adrenergic agents on the different subtypes of the Long-QT syndrome. For LQT1 the in-silico model predicted a QT prolongation in the transmural pseudo ECG without an increase in transmural dispersion of repolarization. For LQT2 and LQT3 the QT prolongation was accompanied by an increased transmural dispersion of repolarization. beta-adrenergic tonus shortened the QT interval and increased transmural dispersion of repolarization. These findings were consistent with the experimental reports.
D. U. J. Keller, O. Dössel, and G. Seemann. Simulating cardiac excitation in a high resolution biventricular model. In Proceedings BMT 2010, 44. DGBMT Jahrestagung, 3-Länder-Tagung D-A-CH, Rostock, vol. 55(s1) , pp. 205-208, 2010
Abstract:
The shape of a simulated excitation wavefront depends on the underlying spatial resolution. The aim of this work is twofold: On the one hand we investigated the dependency of the wavefront on spatial resolution by simulating the excitation spread in three virtual patches of ventricular tissue that have different resolutions. On the other hand we simulate a realistic excitation sequence in an anisotropic and electrophysiologically heterogeneous biventricular model. Our patch experiments with different spatial resolutions demonstrated that resolutions below 0.2 mm led to a deformation of the excitation wavefront to non-elliptical shapes. The biventricular model with 0.2 mm grid size shows realistic excitation spread and conduction velocities. Similar biventricular models in conjunction with a computational representation of the thorax will be used in future to predict the effects of changes on the ion-channel level on the ECG.
M. W. Keller, C. Schilling, A. Luik, C. Schmitt, and O. Dössel. Descriptors for a classification of complex fractionated atrial electrograms as a guidance for catheter ablation of atrial fibrillation. In Biomedizinische Technik / Biomedical Engineering, vol. 55(s1) , pp. 100-103, 2010
Abstract:
Atrial fibrillation (AFib) is a frequent and serious cardiac arrhythmia. A successful method to treat AFib is catheter ab- lation. Areas with complex fractionated atrial electrograms (CFAE) are ideal targets for catheter ablation. Concerning the ablation strategy and the search for CFAEs the physician is mainly dependent on his own judgment. For this reason ablation strategies are highly operator dependent. In this work a set of seven descriptors is presented which show promising results concerning a classification of measured atrial electrograms. The descriptors are evaluated on a database of 25 CFAE sig- nals. The results reveal a possible discrimination between CFAE classes which could be a valuable support for physicians curing AFib
Current models of the human atria represent geometries of single individuals or base on statistical data. We present a work-flow for the creation of patient-specific atrial models. Furthermore we show a framework to compare simulated P- waves and body surface potential maps (BSPMs) of individual patients with measurements. Models of the atrial and thorax anatomy were segmented from MRI data. Volumetric atrial models were semi-automatically enhanced with electrophys- iologically (EP) relevant structures. Simulations were performed on an anisotropic voxel-based mesh and were forward calculated to obtain simulated BSPMs. BSPMs were acquired using a 64 electrode ECG system. Comparison of simulated and measured P-waves in Einthoven leads showed a general agreement of both, although no personalization of the atrial electrophysiology model was performed. P-wave duration was longer in the simulations, highlighting the need for elec- trophysiological model personalization. Simulated and measured BSPMs revealed similar patterns. The presented method enables realistic simulations of atrial activation on patient-specific volumetric atrial models with EP relevant myocardial structures resulting in computed ECGs (P-wave) and BSPMs with show physiological morphologies
Motivation: Anatomical models of the heart can be used to conduct multi-physics simulations. These simulations can aid basic and clinical research and are being translated into clinical practice nowadays.Problem statement: The human myocardium has very complex fiber structure, which has a strong impact on cardiac physiology. To understand and evaluate 3D fiber orientation in volumetric cardiac models, it is often necessary to project these onto printed pictures.Approach: Images of myocardial fibers using color-coded cylinders, color-coded streamlines and anaglyph methods are compared. Results: Streamlines provide a good distinction of myocardial bundles. Cylinders show the most accurate results. Color-coded representations reveal abrupt changes in fiber direction. Anaglyph visualizations give an illusion of depth in 2D prints and can display overlaying bundles. Conclusions: Streamlines are superior in imaging global fiber orientation, whereas cylinders give better results for local structures. Color-coding increases information where fiber structure is very complex, e.g. in the atria. Anaglyph images cause a loss in color information but help the viewer to understand the 3D object. Overall, it is necessary to choose the appropriate method of picturing fibers for specific tasks.
Student Theses (1)
M. Keller. Charakterisierung und Analyse von räumlich-zeitlichen Erregungsmustern bei Vorhofflimmern. Institut für Biomedizinische Technik, Karlsruher Institut für Technologie (KIT). Diplomarbeit. 2010