Y. Jiang, D. Farina, M. Bar-Tal, and O. Dössel. An impedance based catheter positioning system for cardiac mapping and navigation. In IEEE Transactions on Biomedical Engineering, vol. 56(8) , pp. 1963-1970, 2009
Abstract:
Over the last years, nonfluoroscopic in vivo cardiac mapping and navigation systems have been developed and successfully applied in clinical electrophysiology. Clearly, a trend can be observed to introduce more sensors into the measurement system so that physiological information can be gathered simultaneously and more efficiently and the duration of procedure can be shortened significantly. However, it would not be realistic to equip each catheter electrode with a localizer, e.g., by embedding a miniature magnetic location sensor. Therefore, in this paper, an alternate approach has been worked out to efficiently localize multiple catheter electrodes by considering the impedance between electrodes in the heart and electrode patches on the body surface. In application of the new technique, no additional expensive and sophisticated hardware is required other than the currently existing cardiac navigation system. A tank model and a computerized realistic human model are employed to support the development of the positioning system. In the simulation study, the new approach achieves an average localization error of less than 1 mm, which proves the feasibility of the impedance-based catheter positioning system. Consequently, the new positioning system can provide an inexpensive and accurate solution to improve the efficiency and efficacy of catheter ablation.
Y. Jiang, C. Qian, R. Hanna, D. Farina, and O. Dössel. Optimization of the electrode positions of multichannel ECG for the reconstruction of ischemic areas by solving the inverse electrocardiographic problem. In International Journal of Bioelectromagnetism (Cover Article), vol. 11(1) , pp. 27-37, 2009
A. Loewe, W. H. W. Schulze, Y. Jiang, M. Wilhelms, A. Luik, O. Dössel, and G. Seemann. ECG-Based Detection of Early Myocardial Ischemia in a Computational Model: Impact of Additional Electrodes, Optimal Placement, and a New Feature for ST Deviation. In BioMed Research International Article, vol. 2015, pp. 530352, 2014
Abstract:
In case of chest pain, immediate diagnosis of myocardial ischemia is required to respond with an appropriate treatment. The diagnostic capability of the electrocardiogram (ECG), however, is strongly limited for ischemic events that do not lead to ST elevation. This computational study investigates the potential of different electrode setups in detecting early ischemia at 10 minutes after onset: standard 3-channel and 12-lead ECG as well as body surface potential maps (BSPMs). Further, it was assessed if an additional ECG electrode with optimized position or the right-sided Wilson leads can improve sensitivity of the standard 12-lead ECG. To this end, a simulation study was performed for 765 different locations and sizes of ischemia in the left ventricle. Improvements by adding a single, subject specifically optimized electrode were similar to those of the BSPM: 211% increased detection rate depending on the desired specificity. Adding right-sided Wilson leads had negligible effect. Absence of ST deviation could not be related to specific locations of the ischemic region or its transmurality. As alternative to the ST time integral as a feature of ST deviation, the K point deviation was introduced: the baseline deviation at the minimum of the ST-segment envelope signal, which increased 12-lead detection rate by 7% for a reasonable threshold.
D. Farina, Y. Jiang, and O. Dössel. Acceleration of FEM-based transfer matrix computation for forward and inverse problems of electrocardiography. In Med Biol Eng Comput, vol. 47(12) , pp. 1229-1236, 2009
Abstract:
The distributions of transmembrane voltage (TMV) within the cardiac tissue are linearly connected with the patient's body surface potential maps (BSPMs) at every time instant. The matrix describing the relation between the respective distributions is referred to as the transfer matrix. This matrix can be employed to carry out forward calculations in order to find the BSPM for any given distribution of TMV inside the heart. Its inverse can be used to reconstruct the cardiac activity non-invasively, which can be an important diagnostic tool in the clinical practice.The computation of this matrix using the finite element method can be quite time-consuming. In this work, a method is proposed allowing to speed up this process by computing an approximate transfer matrix instead of the precise one. The method is tested on three realistic anatomical models of real-world patients. It is shown that the computation time can be reduced by 50% without loss of accuracy.
Conference Contributions (19)
Y. Jiang, D. Farina, and O. Dössel. The inverse problem of electrocardiography in realistic environment. In Conference on Applied Inverse Problems, 2009
Y. Jiang, W. Hong, D. Farina, and O. Dössel. Solving the inverse problem of electrocardiography in a realistic environment using a spatio-temporal LSQR-Tikhonov hybrid regularization method. In IFMBE Proceedings World Congress on Medical Physics and Biomedical Engineering, vol. 25/2, pp. 817-820, 2009
Y. Jiang, Y. Meng, D. Farina, and O. Dössel. Effect of respiration on the solutions of forward and inverse electrocardiographic problems - a simulation study. In Proc. Computers in Cardiology, pp. 17-20, 2009
Abstract:
The forward problem of electrocardiography aims at obtaining a better understanding of cardiac electrophysiological activities, by means of computer modeling and simulation. Whereas, the inverse electrocardiographic problem provides a direct insight of electrical sources into the heart without interventional procedures. Nowadays, the forward and inverse problems are mostly solved in static models, which do not take into account heart motion and respiration. Besides heart motion, neglecting respiration may also lead to remarkable uncertainties in both forward and inverse solutions. In the present work a dynamic lung model is developed. With this model the effect of respiration on the forward and inverse solutions is studied.
Y. Jiang, C. Qian, R. Hanna, D. Farina, and O. Dössel. Optimization of electrode positions of a wearable ECG monitoring system for efficient and effective detection of acute myocardial infarction. In Proc. Computers in Cardiology, 2009
Y. Jiang, C. Qian, R. Hanna, D. Farina, and O. Dössel. Optimization of the electrode positions of multichannel ECG for the reconstruction of ischemic areas by solving the inverse electrocardiographic problem. In Proc. the 7th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging, 2009
Y. Jiang, D. Farina, and O. Dössel. Localization of the origin of ventricular premature beats by reconstruction of electrical sources using spatio-temporal MAP-based regularization. In Proc. 4th European Conference of the International Federation for Medical and Biological Engineering, vol. 22, pp. 2511-2514, 2008
Abstract:
Ventricular premature beats (VPB) occur when a cardiac depolarization is initiated from a focus in the ventricle instead of the sinoatrial node. Because the ventricular electrical excitation is not started from the intraventriclular conduction system, the excitation propagation in the ventricles behaves in an abnormal manner. This results in an extra asynchronous contraction of the ventricles. In addition VPBs can trigger life-threatening heart arrhythmias. Applying catheter ablation can cure VPB. Therefore it is of importance to localize the origin of VPB using a non-invasive approach before interventional treatment. In this work the inverse problem of electrocardiography is deployed to reconstruct electrical sources in the ventricles, from which the origin of VPB can be identified. By using a spatiotemporal maximum a posteriori (MAP) based regularization the quality of reconstructions is improved. In this work forward calculations with various VPBs are employed to construct a statistical a priori information.
Y. Jiang, D. Farina, and O. Dössel. Effect of heart motion on the solutions of forward and inverse electrocardiographic problem - a simulation study. In Proc. Computers in Cardiology, pp. 365-368, 2008
Abstract:
Solving the forward problem of electrocardiography provides a better understanding of electrical activities in the heart. The inverse problem of electrocardiography enables a direct view of cardiac sources without catheter interventions. Today the forward and inverse computation is most often performed in a static model, which doesn't take into account the heart motion and may result in considerable errors in both forward and inverse solutions. In this work a dynamic heart model is developed. With this model the effect of the heart motion on the forward and inverse solutions is investigated.
Y. Jiang, D. Farina, and O. Dössel. An improved spatio-temporal maximum a posteriori approach to solve the inverse problem of electrocardiography. In 41. Jahrestagung der DGBMT im VDE. Proceedings BMT 2007, vol. 52, 2007
Y. Jiang, D. Farina, and O. Dössel. Reconstruction of myocardial infarction using the improved spatio-temporal MAP-based regularization. In Proc. the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging, 2007
Y. Jiang, D. Farina, C. Kaltwasser, O. Dössel, and W. R. Bauer. Modeling and reconstruction of myocardial infarction. In Gemeinsame Jahrestagung der Deutschen, der Österreichischen und der Schweizerischen Gesellschaft für Biomedizinische Technik, 2006
O. Dössel, Y. Jiang, and W. H. W. Schulze. Localization of the origin of premature beats using an integral method. In International Journal of Bioelectromagnetism, vol. 13(4) , pp. 178-183, 2011
Abstract:
A method to reconstruct integrals of transmembrane voltages in the heart from measured integrals of Body Surface Potential Maps (BSPM) is proposed. It is applied to localize the origin of premature beats in the heart (extrasystoles). In contrast to other proposals no specific assumption about the slope of the transmembrane voltage during depolarization is made, in particular it must not be a step function. This way the non-linear problem of localizing ectopic foci based on activation times is translated into a linear inverse problem. A Maximum-A-Posteriori (MAP) estimator is applied to solve the ill-posed linear inverse problem. Successful localization of ventricular extrasystoles is demonstrated using computer simulations. Even endocardial, midmyocardial and epicardial foci can be separated.
A. Loewe, W. H. W. Schulze, Y. Jiang, M. Wilhelms, and O. Dössel. Determination of optimal electrode positions of a wearable ECG monitoring system for detection of myocardial ischemia: a simulation study. In Computing in Cardiology, vol. 38, pp. 741-744, 2011
Abstract:
The early detection of myocardial ischemia is an essential lever for its successful treatment. We investigated an ECG monitoring system with 3 electrodes. Optimal electrode positions are determined using a cellular automaton. The spatially heterogeneous effects of myocardial ischemia were modeled by altering 4 electrophysiological parameters: action potential amplitude and duration, conduction velocity as well as resting membrane voltage. Both, transmural heterogeneity and the influence of the border zone were considered in the simulations on three patient models. The detection of myocardial ischemia is based on ST segment deviation from the physiological case. The signals used to find the best electrode positions comprise ischemic regions with different transmural extents in all 17 AHA segments. We show which ischemic ECGs can be detected given a realistic signal-to-noise ratio, false positive rate and maximum response time of the system.
R. Hanna, Y. Jiang, D. Farina, and O. Dössel. Imaging of cardiac electrical sources using a novel spatio-temporal MAP-based regularization method. In IFMBE Proceedings World Congress on Medical Physics and Biomedical Engineering, vol. 25/2, pp. 813-816, 2009
W. Schulze, D. Farina, Y. Jiang, and O. Dössel. A Kalman filter with integrated Tikhonov-regularization to solve the inverse problem of electrocardiography. In IFMBE Proceedings World Congress on Medical Physics and Biomedical Engineering, vol. 25/2, pp. 821-824, 2009
D. Farina, Y. Jiang, O. Dössel, C. Kaltwasser, and W. R. Bauer. Model-based method of non-invasive reconstruction of ectopic focus locations in the left ventricle. In Proc. the 4th European Congress for Medical and Biomedical Engineering, pp. 2560-2563, 2008
V. Reimund, D. Farina, Y. Jiang, and O. Dössel. Reconstruction of ectopic foci using the critical point theory. In Proc. the 4th European Congress for Medical and Biomedical Engineering, vol. 22, pp. 2703-2706, 2008
Abstract:
The treatment of ventricular arrhythmia often requires detailed information about the location of ectopic beats. A noninvasive procedure is adopted to achieve this purpose. The aim of this work is the reconstruction of ectopic foci by using the critical point theory introduced by Greensite and Huiskamp [1]. The reliability and adaptability of the obtained simulation results are evaluated with regard to the reconstruction error.The reconstruction of bioelectrical sources from measured body surface potentials is an ill-posed problem and requires regularization. The advantage of the presented method is to deal with a well-posed formulation of the problem. Locations of ectopic beats can be detected by the critical point theorem. Four simulated ectopic centers have been localized to evaluate the method. The influence of Gaussian noise is considered.The reconstruction depends on the effective rank of a singular value decomposition (SVD) of the multi-channel ECG matrix. Regarding lower ranks, many critical points presenting ectopic foci can be observed. For higher ranks, the detection leads more and more to a stable estimation of ectopic locations. The detected critical points are shown to be reliable approximations of the simulated ectopic foci.
D. Farina, Y. Jiang, O. Skipa, O. Dössel, and C. Kaltwasser. The use of the simulation results as a priori information to solve the inverse problem of electrocardiography for a patient. In Proc. Computers in Cardiology, vol. 32, pp. 571-574, 2005
Dissertations (1)
Y. Jiang. Solving the inverse problem of electrocardiography in a realistic environment. KIT Scientific Publishing. Dissertation. 2010
Abstract:
Heart disease is a leading cause of death worldwide. Straightforward information about the cardiac electrophysiology can help to improve the quality of diagnosis of heart diseases. The inverse problem of electrocardiography and the intracardiac catheter measurement are two ways to get access to the electrophysiology in the heart. In this thesis six research topics related to these two techniques are included
Student Theses (2)
Y. Jiang. Modeling and imaging of the repolarization of the human heart. Institut für Biomedizinische Technik, Universität Karlsruhe (TH). Masterarbeit. 2006
Y. Jiang. Implementation of a stochastic regularization method to solve the inverse problem of electrocardiography. Institut für Biomedizinische Technik, Universität Karlsruhe (TH). Masterarbeit. 2005