The specific absorption rate (SAR) is a limiting constraint in sequence design for high-field MRI. SAR estimation is typically performed by numerical simulations using generic human body models. This entails an intrinsic uncertainty in present SAR prediction. This study first investigates the required detail of human body models in terms of spatial resolution and the number of soft tissue classes required, based on finite-differences time-domain simulations of a 3 T body coil. The numerical results indicate that a resolution of 5 mm is sufficient for local SAR estimation. Moreover, a differentiation between fatty tissues, water-rich tissues, and the lungs was found to be essential to represent eddy current paths inside the human body. This study then proposes a novel approach for generating individualized body models from whole-body water-fat-separated MR data and applies it to volunteers. The SAR hotspots consistently occurred in the arms due to proximity to the body coil as well as in narrow regions of the muscles. An initial in vivo validation of the simulated fields in comparison with measured B(1) -field maps showed good qualitative and quantitative agreement. Magn Reson Med, 2011. (c) 2011 Wiley-Liss, Inc.
OBJECT: Parallel transmission facilitates a relatively direct control of the RF transmit field. This is usually applied to improve the RF field homogeneity but might also allow a reduction of the specific absorption rate (SAR) to increase freedom in sequence design for high-field MRI. However, predicting the local SAR is challenging as it depends not only on the multi-channel drive but also on the individual patient. MATERIALS AND METHODS: The potential of RF shimming for SAR management is investigated for a 3 T body coil with eight independent transmit elements, based on Finite-Difference Time-Domain (FDTD) simulations. To address the patient-dependency of the SAR, nine human body models were generated from volunteer MR data and used in the simulations. A novel approach to RF shimming that enforces local SAR constraints is proposed. RESULTS: RF shimming substantially reduced the local SAR, consistently for all volunteers. Using SAR constraints, a further SAR reduction could be achieved with only minor compromises in RF performance. CONCLUSION: Parallel transmission can become an important tool to control and manage the local SAR in the human body. The practical use of local SAR constraints is feasible with consistent results for a variety of body models.
The specific absorption rate (SAR) is an important safety criterion, limiting many MR protocols with respect to the achievable contrast and scan duration. Parallel transmission enables control of the radiofrequency field in space and time and hence allows for SAR management. However, a trade-off exists between radiofrequency pulse performance and SAR reduction. To overcome this problem, in this work, parallel transmit radiofrequency pulses are adapted to the position in sampling k-space. In the central k-space, highly homogeneous but SAR-intensive radiofrequency shim settings are used to achieve optimal performance and contrast. In the outer k-space, the homogeneity requirement is relaxed to reduce the average SAR of the scan. The approach was experimentally verified on phantoms and volunteers using field echo and spin echo sequences. A reduction of the SAR by 25-50% was achieved without compromising image quality.
A magnetic resonance imaging system (300) acquires magnetic resonance data (358) from a subject (318) that may include an electrically conductive object (e.g. an implant or a medical device). The magnetic resonance imaging system includes a radio-frequency transmitter (314) for generating a radio-frequency transmit field for acquiring the magnetic resonance data using a radio-frequency antenna (310). The radio-frequency transmitter has multiple transmit channels. The radio-frequency antenna comprises multiple antenna elements (312) each adapted to connect to an antenna element. The amplitude and phase values of the RF transmit field of each of the transmit channels can be selected such that the magnetic field generated by the RF antenna is minimized at the location of the electrically conductive object, thereby reducing RF heating of the object.