Abstract:
In silico studies are often used to analyze mechanisms of cardiac arrhythmias. The electrophysiological cell models that are used to simulate the membrane potential in these studies range from highly detailed physiological models to simplistic phenomenological models. To effectively cover the middle ground between those cell models, we utilize the manifold boundary approxi- mation method (MBAM) to systematically reduce the widely used O’Hara-Rudy ventricular cell model (ORd) and investigate the influence of parametrization of the model as well as different strategies of choosing input quantities, further called quantities of interest (QoI). As a result of the reduction process, we present three re- duced model variants of the ORd model that only contain a fraction of the original model’s ionic currents resulting in a twofold speedup in computation times compared to the original model. We find that the reduced models show similar action potential duration restitution and repolarization rates. Additionally, we are able to initialize and observe stable spiral wave dynamics on a 3D tissue patch for 2 out of the 3 reduced models.