Simulation of the contraction of the ventricles in a human heart model including atria and pericardium : Finite element analysis of a frictionless contact problem.

In

E. Kovacheva, L. Thämer, **T. Fritz**, G. Seemann, M. Ochs, O. Dössel, and A. Loewe.

Estimating cardiac active tension from wall motion—An inverse problem of cardiac biomechanics.

In*International Journal for Numerical Methods in Biomedical Engineering*, vol. 37(12) , pp. e3448, 2021

Estimating cardiac active tension from wall motion—An inverse problem of cardiac biomechanics.

In

S. Land, V. Gurev, S. Arens, C. M. Augustin, L. Baron, R. Blake, C. Bradley, S. Castro, A. Crozier, M. Favino, T. E. Fastl, **T. Fritz**, H. Gao, A. Gizzi, B. E. Griffith, D. E. Hurtado, R. Krause, X. Luo, M. P. Nash, S. Pezzuto, G. Plank, S. Rossi, D. Ruprecht, G. Seemann, N. P. Smith, J. Sundnes, J. J. Rice, N. Trayanova, D. Wang, Z. Jenny Wang, and S. A. Niederer.

Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour.

In*Proceedings. Mathematical, Physical, and Engineering Sciences / the Royal Society*, vol. 471(2184) , pp. 2015.0641, 2015

Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour.

In

D. U. J. Keller, O. Jarrousse, **T. Fritz**, S. Ley, O. Dössel, and G. Seemann.

Impact of physiological ventricular deformation on the morphology of the T-wave: a hybrid, static-dynamic approach.

In*IEEE Trans Biomed Eng.*, vol. 58(7) , pp. 2109-2119, 2011

Impact of physiological ventricular deformation on the morphology of the T-wave: a hybrid, static-dynamic approach.

In

The inverse problem of cardiac mechanics - estimation of cardiac active stress from endocardial motion tracking.

In

Electromechanical modeling of the human atria.

In

In silico analysis of the impact of transmural myocardial infarction on cardiac mechanical dynamics for the 17 AHA segments.

In

Analyzing transmural myocardial infarction of the left ventricle using computer modeling.

In

Analyzing the transmural electromechanical heterogeneity of the left ventricle in a computer model.

In

Adapting a mass-spring system to energy density function describing myocardial mechanics.

In

L. Baron, **T. Fritz**, O. Dössel, and G. Seemann.

Sensitivity study of fiber orientation on stroke volume in the human left ventricle.

In*Computing in Cardiology*, vol. 41, pp. 681-684, 2014

Sensitivity study of fiber orientation on stroke volume in the human left ventricle.

In

W. H. W. Schulze, **T. Fritz**, D. Potyagaylo, J. Trächtler, R. Schimpf, T. Papavassiliu, E. Tülümen, B. Rudic, O. Dössel, V. Liebe, C. Doesch, and M. Borggrefe.

Effect of mesh resolution on forward calculations of the electrocardiogram in a simplified thorax model.

In*Biomedizinische Technik / Biomedical Engineering*, vol. 59(s1) , pp. 945-948, 2014

Effect of mesh resolution on forward calculations of the electrocardiogram in a simplified thorax model.

In

L.-M. Busch, **T. Fritz**, M. W. Krueger, O. Dössel, and G. Seemann.

Impact of different ablation patterns on the biomechanics of the human left atrium.

In*Biomedizinische Technik. Biomedical Engineering*, vol. 58(s1) , 2013

Impact of different ablation patterns on the biomechanics of the human left atrium.

In

O. Jarrousse, **T. Fritz**, and O. Dössel.

Modeling breast tissue mechanics from Prone to supine positions with a modified mass-spring system.

In*Proceedings BMT 2010, 44. DGBMT Jahrestagung, 3-Länder-Tagung D-A-CH, Rostock*, vol. 55(S1) , pp. 87-90, 2010

Modeling breast tissue mechanics from Prone to supine positions with a modified mass-spring system.

In

M. W. Krueger, V. Schmidt, D. U. J. Keller, **T. Fritz**, O. Dössel, and G. Seemann.

Comparison of Methods for Visualization of 3D Myocardial Fiber Structure in Printed Images.

In*KIT PhD Symposium 2010*, pp. 80, 2010

Comparison of Methods for Visualization of 3D Myocardial Fiber Structure in Printed Images.

In

O. Jarrousse, **T. Fritz**, and O. Dössel.

Implicit time integration in a volumetric mass-spring system for modeling myocardial elastomechanics.

In*IFMBE Proceedings World Congress on Medical Physics and Biomedical Engineering*, vol. 25/4, pp. 876-879, 2009

Implicit time integration in a volumetric mass-spring system for modeling myocardial elastomechanics.

In

O. Jarrousse, **T. Fritz**, and O. Dössel.

A volumetric mass-spring system for modeling myocardial elastomechanics.

In*The Cardiac Physiome: Multi-scale and Multi-physics Mathematical Modelling Applied to the Heart*, 2009

A volumetric mass-spring system for modeling myocardial elastomechanics.

In

O. Jarrousse, **T. Fritz**, and O. Dössel.

A modifed mass-spring system for myocardial mechanics modeling.

In*Proceedings of the 4th European Congress for Medical and Biomedical Engineering 2008. 23-27 November 2008, Antwerp, Belgium*, vol. 22, pp. 1943-1946, 2008

A modifed mass-spring system for myocardial mechanics modeling.

In