Abstract:
In this work an optimization-based method of modeling the cardiac activity is presented. The method employs a personalized anatomical 3D model of the patients thorax provided by the segmentation of MRI data as well as an electrophysiological model of the heart.Cellular automaton is used to model the propagation of depolarization and repolarization fronts through the myocardium. The form of action potential (AP) curves was previously derived from the coupled myocardium cell models developed by Noble, Priebe-Beuckelmann and ten Tusscher. The results provided by these three cell models are compared.A series of body surface potential maps (BSPMs) is calculated, the signals on the nodes representing the electrodes are recorded, providing thus a simulated multichannel ECG. A root-mean-square of the difference between simulated and measured ECGs is taken as a criterion for optimization of heart model parameters.The method provides a time-dependent distribution of transmembrane voltages within the heart muscle of a patient.