IBT Publications by Brenneisen

Journal Articles (2)

J. Brenneisen, O. Dössel, and A. Loewe.
Influence of pressure boundary condition definition on flow patterns in cardiac simulations.
In Modeling the Cardiac Function, 2022
J. Brenneisen, A. Daub, T. Gerach, E. Kovacheva, L. Huetter, B. Frohnapfel, O. Dössel, and A. Loewe.
Sequential Coupling Shows Minor Effects of Fluid Dynamics on Myocardial Deformation in a Realistic Whole-Heart Model..
In Frontiers in cardiovascular medicine, vol. 8, pp. 768548, 2021

Conference Contributions (5)

J. Brenneisen, D. Müller, A. Stroh, B. Frohnapfel, O. Dössel, and A. Loewe.
Cardiac fluid dynamics based on immersed boundary method for application in hypertrophic cardiomyopathy.
In 7th International Conference on Computational & Mathematical Biomedical Engineering - CMBE2021, pp. 439 - 442, 2022
J. Brenneisen, S. Schuler, E. Kovacheva, T. Gerach, O. Dössel, and A. Loewe.
Influence of Geometrical Properties for the Calculation of a Pressure-Free Whole Heart Geometry.
In 14th WCCM-ECCOMAS Congress 2020, pp. 1-9, 2021
J. Brenneisen, C. Wentzel, F. Karwan, O. Dössel, and A. Loewe.
Fluid dynamics in the human heart: Altered vortex formation and wash-out in mitral regurgitation simulations.
In Current Directions in Biomedical Engineering, vol. 7(2) , pp. 199-202, 2021
J. Brenneisen, A. Daub, E. Kovacheva, T. Gerach, L. Hütter, B. Frohnapfel, O. Dössel, and A. Loewe.
A sequential coupling approach for fluid-structure interaction in a patient specific whole heart geometry.
In iHEART Congress – Modelling the Cardiac Function, 2021
J. Brenneisen, E. Kovacheva, T. Gerach, A. Daub, L. Hütter, B. Frohnapfel, O. Dössel, and A. Loewe.
Characterization of the Fluid Dynamic Pressure Field in the Human Heart as a Basis for Coupled Fluid-Structure Simulations.
In BMT 2020, vol. Poster Session, pp. 259, 2020

Dissertations (1)

J. Brenneisen.
Interaction of elastomechanics and fluid dynamics in the human heart: Opportunities and challenges of light coupling strategies.
Karlsruher Institut für Technology (KIT). Dissertation. 2023

Student Theses (1)

J. Brenneisen.
Analyse und Vergleich verschiedener EIT Rekonstruktionsansätze anhand simulierter und gemessener Daten hinsichtlich herzsynchroner Pulsatilität.
Institut für Biomedizinische Technik, Karlsruher Institut für Technologie (KIT). Masterarbeit. 2019