Abstract:
Regular activation of the heart originates from cyclic spontaneous depolarisations of sinoatrial node cells (SANCs). Variations in electrolyte levels, commonly observed in haemodialysis (HD) patients, and the autonomic nervous system (ANS) profoundly affect the SANC function. Thus we investigated the effects of hypocalcaemia and sympathetic stimulation on the SANC beating rate (BR). The β-adrenergic receptor (β-AR) signalling cascade, as described by Behar et al., was incorporated into the SANC models of Severi et al. (rabbit) and Fabbri et al. (human). Simulations were conducted across various extracellular calcium ([Ca]) (0.6-1.8 mM) and isoprenaline concentrations [ISO] (0-1000 nM) for a sufficient period of time to allow transient oscillations to equilibrate and reach a limit cycle. The β-AR cell response of the extended models was validated against new Langendorff-perfused rabbit heart experiments and literature data. The extended models revealed that decreased [Ca] necessitated an exponential-like increase in [ISO] to restore the basal BR. Specifically at 1.2 mM [Ca], the Severi and Fabbri models required 28.0 and 9.6 nM [ISO], respectively, to restore the initial BR. Further reduction in [Ca] to 0.6 mM required 170.0 and 43.6 nM [ISO] to compensate for hypocalcaemia. A sudden loss of sympathetic tone at low [Ca] resulted in a loss of automaticity within seconds. These findings suggest that hypocalcaemic bradycardia can be compensated for by an elevated sympathetic tone. The integration of the β-AR pathways led to a logarithmic BR increase and offers insights into potential pathomechanisms underlying sudden cardiac death (SCD) in HD patients. KEY POINTS: We extended the sinoatrial node cell (SANC) models of Severi et al. (rabbit) and Fabbri et al. (human) using the β-adrenergic receptor (β-AR) signalling cascade Behar et al. described. Simulations were conducted across various extracellular calcium ([Ca]) (0.6-1.8 mM) and isoprenaline concentrations [ISO] (0-1000 nM) to reflect conditions in haemodialysis (HD) patients. An exponential-like increase in [ISO] compensated for hypocalcaemia-induced bradycardia in both models, whereas interspecies differences increased the sensitivity of the extended Fabbri model towards hypocalcaemia and increased sympathetic tone. The extended models may help to further understand the pathomechanisms of several cardiovascular diseases affecting pacemaking, such as the high occurrence of sudden cardiac death (SCD) in chronic kidney disease (CKD) patients.
Abstract:
Sinus node (SN) pacemaking is based on a coupling between surface membrane ion-channels and intracellular Ca2+-handling. The fundamental role of the inward Na+/Ca2+ exchanger (NCX) is firmly established. However, little is known about the reverse mode exchange. A simulation study attributed important role to reverse NCX activity, however experimental evidence is still missing. Whole-cell and perforated patch-clamp experiments were performed on rabbit SN cells supplemented with fluorescent Ca2+-tracking. We established 2 and 8 mM pipette NaCl groups to suppress and enable reverse NCX. NCX was assessed by specific block with 1 μM ORM-10962. Mechanistic simulations were performed by Maltsev–Lakatta minimal computational SN model. Active reverse NCX resulted in larger Ca2+-transient amplitude with larger SR Ca2+-content. Spontaneous action potential (AP) frequency increased with 8 mM NaCl. When reverse NCX was facilitated by 1 μM strophantin the Ca2+i and spontaneous rate increased. ORM-10962 applied prior to strophantin prevented Ca2+i and AP cycle change. Computational simulations indicated gradually increasing reverse NCX current, Ca2+i and heart rate with increasing Na+i. Our results provide further evidence for the role of reverse NCX in SN pacemaking. The reverse NCX activity may provide additional Ca2+-influx that could increase SR Ca2+-content, which consequently leads to enhanced pacemaking activity.
Abstract:
Background and Purpose: The exact mechanism of spontaneous pacemaking is not fully understood. Recent results suggest tight cooperation between intracellular Ca handling and sarcolemmal ion channels. An important player of this crosstalk is the Na/Ca exchanger (NCX), however, direct pharmacological evidence was unavailable so far because of the lack of a selective inhibitor. We investigated the role of the NCX current in pacemaking and analyzed the functional consequences of the I-NCX coupling by applying the novel selective NCX inhibitor ORM-10962 on the sinus node (SAN). Experimental Approach: Currents were measured by patch-clamp, Ca-transients were monitored by fluorescent optical method in rabbit SAN cells. Action potentials (AP) were recorded from rabbit SAN tissue preparations. Mechanistic computational data were obtained using the Yaniv . SAN model. Key Results: ORM-10962 (ORM) marginally reduced the SAN pacemaking cycle length with a marked increase in the diastolic Ca level as well as the transient amplitude. The bradycardic effect of NCX inhibition was augmented when the funny-current (I) was previously inhibited and , the effect of I was augmented when the Ca handling was suppressed. Conclusion and Implications: We confirmed the contribution of the NCX current to cardiac pacemaking using a novel NCX inhibitor. Our experimental and modeling data support a close cooperation between I and NCX providing an important functional consequence: these currents together establish a strong depolarization capacity providing important safety factor for stable pacemaking. Thus, after individual inhibition of I or NCX, excessive bradycardia or instability cannot be expected because each of these currents may compensate for the reduction of the other providing safe and rhythmic SAN pacemaking.