Aims Chronic left atrial enlargement (LAE) increases the risk of atrial fibrillation. Electrocardiogram (ECG) criteria might provide a means to diagnose LAE and identify patients at risk; however, current criteria perform poorly. We seek to characterize the potentially differential effects of atrial dilation vs. hypertrophy on the ECG P-wave. Methods and results We predict effects on the P-wave of (i) left atrial dilation (LAD), i.e. an increase of LA cavity volume without an increase in myocardial volume, (ii) left atrial concentric hypertrophy (LACH), i.e. a thickened myocardial wall, and (iii) a combination of the two. We performed a computational study in a cohort of 72 anatomical variants, derived from four human atrial anatomies. To model LAD, pressure was applied to the LA endocardium increasing cavity volume by up to 100%. For LACH, the LA wall was thickened by up to 3.3 mm. P-waves were derived by simulating atrial excitation propagation and computing the body surface ECG. The sensitivity regarding changes beyond purely anatomical effects was analysed by altering conduction velocity by 25% in 96 additional model variants. Left atrial dilation prolonged P-wave duration (PWd) in two of four subjects; in one subject a shortening, and in the other a variable change were seen. Left atrial concentric hypertrophy, in contrast, consistently increased P-wave terminal force in lead V1 (PTF-V1) in all subjects through an enlarged amplitude while PWd was unaffected. Combined hypertrophy and dilation generally enhanced the effect of hypertrophy on PTF-V1. Conclusion Isolated LAD has moderate effects on the currently used P-wave criteria, explaining the limited utility of PWd and PTF-V1 in detecting LAE in clinical practice. In contrast, PTF-V1 may be a more sensitive indicator of LA myocardial hypertrophy.
Models of cardiac mechanics are increasingly used to investigate cardiac physiology. These models are characterized by a high level of complexity, including the particular anisotropic material properties of biological tissue and the actively contracting material. A large number of independent simulation codes have been developed, but a consistent way of verifying the accuracy and replicability of simulations is lacking. To aid in the verification of current and future cardiac mechanics solvers, this study provides three benchmark problems for cardiac mechanics. These benchmark problems test the ability to accurately simulate pressure-type forces that depend on the deformed objects geometry, anisotropic and spatially varying material properties similar to those seen in the left ventricle and active contractile forces. The benchmark was solved by 11 different groups to generate consensus solutions, with typical differences in higher-resolution solutions at approximately 0.5%, and consistent results between linear, quadratic and cubic finite elements as well as different approaches to simulating incompressible materials. Online tools and solutions are made available to allow these tests to be effectively used in verification of future cardiac mechanics software.
Conference Contributions (6)
L. Baron, A. Loewe, and O. Dössel. From clinics to the virtual beating heart a general modeling workflow for patient-specific electromechanical heart simulations. In BMTMedPhys 2017, vol. 62(S1) , pp. S70, 2017
Abstract:
Generating meshes of complex structures in the human body like the heart organ is a prerequisite for computational simulations of of organ function. The quality of the conclusions derived from these simulations greatly depends on the quality and accuracy of the mesh they are based on. Volumetric computation domain can be represented by an equally-spaced voxel grid, or – in case of more sophisticated partial differential equation discretization methods (finite elements, finite volumes) – first, second or even higher order tetrahedral meshes. Here, we present a workflow that is capable of creating high quality meshes for such simulations. The workflow contains segmentation, surface mesh generation, volume mesh generation, and patient-specific parameter fitting to produce the desired results. While segmentation itself is a more or less unique mapping from a grayscale DICOM data set to a labeled, three-dimensional voxel mesh, different approaches exist for their transformation to a surface mesh. Our process involves a two-level approach for obtaining triangular or mixed rectangular surface meshes of desired quality and resolution. Both are crucial for the next step: obtaining a volumetric tetrahedral grid with the desired degrees of freedom. In the last step, a derivative-free parameter estimation approach is used to calibrate the dynamic behavior and tailor the model patient-specifically. All software used in the workflow is published under open source licenses and freely available. Its capability is demonstrated by means of an elastomechanical simulation of a human heart and yields measurable validation quantities in physiological ranges. We want to stress that the presented approach is generic and can easily be used for the model generation of other organs like liver, lungs or the aortic arch as well. The resulting meshes can be used for various types of simulations (electrical excitation propagation, blood flow) and use cases (clinical diagnostics, therapy planning etc.).
L. Baron, T. Fritz, O. Dössel, and G. Seemann. Sensitivity study of fiber orientation on stroke volume in the human left ventricle. In Computing in Cardiology, vol. 41, pp. 681-684, 2014
Abstract:
Orientations of myocytes impact electric excitation propagation and mechanical contraction in the human heart. Measured fiber angles in experiments are obtained from different species (e. g. rat, canine, dog, human heart) and vary by various reasons. It is unclear to what ex- tent non-exact fiber angles impact the quality of computa- tional simulations. In this paper, mechanical simulations with different ventricular angles were performed and com- pared. The simulations covered the complete heart with both ventricles, both atria and the pericardium and were performed using finite element method. Helix angles were varied between 20\0 and 70\0 on endocardium and \070\0 and \020\0 on epicardium. Results showed that fiber ori- entations had only a minor contribution to the difference between endsystolic and enddiastolic pressure of < 8.3 %. The influence on stroke volume as well as AVPD is sig- nificant (changes by 34 % for SV and 241 % for APVD) , but it could not be observed that a higher AVPD yields a higher stroke volume. Concludingly, fiber orientations are important for reliable computational simulations of human hearts and should be incorporated with great care.
Over the last decades, computational models have been applied in in-silico simulations of the heart biomechan- ics. These models depend on input parameters. In particular, four parameters are needed for the constitutive law of Guc- cione et al., a model describing the stress-strain relation of the heart tissue. In the literature, we could find a wide range of values for these parameters. In this work, we propose an optimization framework which identifies the parameters of a constitutive law. This framework is based on experimental measurements conducted by Klotz et al.. They provide an end-diastolic pressure-volume relation- ship. We applied the proposed framework on one heart model and identified the following elastic parameters to optimally match the Klotz curve: 𝐶 = 313 Pa, 𝑏𝑓 = 17.8, 𝑏𝑡 = 7.1 and 𝑏𝑓𝑡 = 12.4. In general, this approach allows to identify optimized param- eters for a constitutive law, for a patient-specific heart geome- try. The use of optimized parameters will lead to physiological simulation results of the heart biomechanics and is therefore an important step towards applying computational models in clinical practice.
A. Müller, E. Kovacheva, S. Schuler, O. Dössel, and L. Baron. Effects of local activation times on the tension development of human cardiomyocytes in a computational model. In Current Directions in Biomedical Engineering, vol. 4(1) , pp. 247-250, 2018
Abstract:
The human heart is an organ of high complexity and hence, very challenging to simulate. To calculate the force developed by the human heart and therefore the tension of the muscle fibers, accurate models are necessary. The force generated by the cardiac muscle has physiologically imposed limits and depends on various characteristics such as the length, strain and the contraction velocity of the cardiomyocytes. Another characteristic is the activation time of each cardiomyocyte, which is a wave and not a static value for all cardiomyocytes. To simulate a physiologically correct excitation, the functionality of the cardiac simulation framework CardioMechanics was extended to incorporate inhomogeneous activation times. The functionality was then used to evaluate the effects of local activation times with two different tension models. The active stress generated by the cardiomyocytes was calculated by (i) an explicit function and (ii) an ode-based model. The results of the simulations showed that the maximum pressure in the left ventricle dropped by 2.3% for the DoubleHill model and by 5.3% for the Lumens model. In the right ventricle the simulations showed similar results. The maximum pressure in both the left and the right atrium increased using both models. Given that the simulation of the inhomogeneously activated cardiomyocytes increases the simulation time when used with the more precise Lumens model, the small drop in maximum pressure seems to be negligible in favor of a simpler simulation model.
E. Kovacheva, L. Baron, O. Dössel, and A. Loewe. Electro-Mechanical Delay in the Human Heart: A Study on a Simple Geometry. In Computing in Cardiology Conference (CinC), vol. 45, 2018
Abstract:
The contraction of the heart is a complex process involving the interaction of the passive properties of the tissue and the active tension development, which is elicited by the electrical activation of the cells. In this study, the electro-mechanical delay (EMD) was investigated as well as its dependence on the length of the sarcomeres, which are the contractile units within the cell. EMD was defined as the time offset between the electrical activation of the cell and the time of maximal tension. On a simple bar geometry with unidirectional fibre orientation and a linear local activation time distribution, the EMD proved to be inhomogeneous. The contraction of the early activated regions caused an elongation of the sarcomere (stretch) in the neighbouring regions, which ware electrically activated at a later time. The tension in the stretched region reached twice the value of the cells in the not-stretched, early activated region . Furthermore, the EMD in the early electrically activated region was more than 0.2 s, which was about twice the EMD of the stretched regions. In conclusion, the stretched region developed higher tension within a shorter time interval compared to the early activated region. Future studies will investigate how the inhomogeneous EMD affects cardiac output.
S. Schuler, L. Baron, A. Loewe, and O. Dössel. Developing and coupling a lumped element model of the closed loop human vascular system to a model of cardiac mechanics. In BMTMedPhys 2017, vol. 62(S1) , pp. S69, 2017
Abstract:
Modelling the interaction of the heart and the vascular system allows to study the pumping efficiency of the heart in a controlled environment under various cardiac and vascular conditions such as arrhythmias, dyssynchronies, regions of stiffened myocardium, valvular stenoses or decreased vascular compliances. To pose realistic hemodynamic boundary conditions to a four-chambered elastomechanical heart model, we developed a lumped element model of the closed loop human vascular system. Systemic and pulmonary circulations were each represented by a three-element Windkessel model emptying into a venous compliance. Both circulations were coupled by connecting the venous compliances to the corresponding atrium via venous resistances. Cardiac valves were represented by ideal diodes and resistances. Strong coupling between the heart and the vascular system model was accomplished by estimating the cardiac pressures that lead to continuous flows across the model interfaces. Active regulatory mechanisms were not considered. Pressures, flows and volumes throughout the circulatory system were simulated until a steady state was reached and the effects of model parameters on these hemodynamic parameters were evaluated in a sensitivity analysis. Increasing the systemic peripheral resistance by 50% caused an 8% decrease in stroke volume (SV) and a 33% increase in mean arterial pressure. Increased venous resistance descreased the E/A wave ratio of the atrioventricular flow and led to a reduced SV by impeding passive cardiac filling. Increasing the arterial compliance decreased mean cardiac pressures, while only slightly reducing the SV. Larger arterial resistances mainly caused higher peak systolic pressures. Furthermore, we show that embedding the heart model into surrounding elastic tissue by forcing permanent contact at the pericardial surface leads to more realistic time courses of atrial volumes and atrial pressure-volume curves composed of an A and a V loop as found in measurements. In conclusion, this work enables simulations of diseases that involve significant cardiovascular interaction.
Dissertations (1)
L. Baron. In Silico Modeling, Simulation and Optimization of Human Cardiac Motion. Karlsruher Institut für Technologie (KIT). Dissertation. 2022
Abstract:
Cardiac diseases are the number one reasons for death in the western world. Computa- tional simulations provide the opportunity to conduct experiments and predictions that are not possible in humans due to ethical and other reasons. High performance computa- tion allows the use of demanding coupled computational models of high complexity and a high level of detail, complying with a wide range of experimental data from the human heart. In this thesis, different aspects of computational heart modeling are covered: models describing passive tissue behavior, active contractile behavior, circulatory system modeling, influences of the pericardium and surrounding tissue on the heart as well as methods to obtain suitable parameters for these models. For each aspect, several modeling approaches are presented and compared. Finally, a scalability evaluation of the highly-parallelized implementation and an evaluation of the proper choice of mesh resolution for credible numerical results are covered. Concludingly, this thesis allows the reader to gain insights into the complexity of computational heart modeling and to make an appropriate choice of models and parameters suitable for specific applications.