Abstract:
Background: Patients with end-stage renal disease show an increased prevalence of atrial fibrillation. A combined simulation and electrocardio- gram analysis study revealed a correlation between the changes in plasma electrolytes and intra-atrial conduction velocity related to hemodialysis (HD) session. A recognized limitation of the study is that simulations were performed on single-cell level. We present a computer study to investigate the influence of HD-related electrolyte modifications on atrial electrophys- iology in a volumetric environment.Methods: Based on the Courtemanche-Ramirez-Nattel model and its parameterization for different atrial tissues, we studied action potential, effective refractory period, conduction velocity (CV) restitution, and wave length restitution for common atrial myocardium (CAM) and fast conducting Crista Terminalis (CT). We used isotropic, homogeneous tissue patches. External stimuli were applied with 184 different pacing rates (PRs) from 330 to 1250 milliseconds.Results: The effect of temporary HD- related electrolyte changes on the action potential morphology and effective refractory period showed results consistent with the previous single-cell study. Action potential morphology was not significantly altered both in CAM and CT, but resting potential decreased from ␣82.6 to ␣88.2 mV for CAM and from ␣81.7 to ␣87.3 mV for CT. Effective refractory period decreased from 32 (pre-HD) to 308 milliseconds (end-HD). At a PR of 832 milliseconds, CV dropped by ␣6.3% for both types of tissue (CAM: 741 694 mm/s; CT: 746 699 mm/s). Wave length increased slightly with higher PR, but rapidly fell off below a PR of 450 milliseconds. Wave length was ␣30 mm shorter in the end-HD condition.Conclusions: Conduction velocity decrease and consequent wave length shortening increases vulnerability for atrial fibrillation onset, especially in conjunction with structural dilation often present in atria of end-stage renaldisease patients. Temporary HD-caused electrical remodeling has equal effects on regular and fast-conducting tissue. Although there is no biophysical model for fast interatrial condition pathways (eg, Bachmann dundle) available, the HD influence on them should also be similar and therefore slow down interatrial conduction significantly. It has been suggested that constantly repeating alteration of atrial electrophysiology may lead to a longer lasting electrical atrial remodeling; future studies should therefore investigate the long-term HD effects.