C. Stehning, P. Bornert, K. Nehrke, and O. Dössel. Free breathing 3D balanced FFE coronary magnetic resonance angiography with prolonged cardiac acquisition windows and intra-RR motion correction. In Magnetic Resonance in Medicine : Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, vol. 53(3) , pp. 719-723, 2005
Abstract:
A shortcoming of today's coronary magnetic resonance angiography (MRA) is its low total scan efficiency (<5%), as only small well-defined fractions of the respiratory (50%) and cardiac (10%) cycle are used for data acquisition. These precautions are necessary to prevent blurring and artifacts related to respiratory and cardiac motion. Hence, scan times range from 4 to 9 min, which may not be tolerated by patients. To overcome this drawback, an ECG-triggered, navigator-gated free breathing radial 3D balanced FFE sequence with intra-RR motion correction is investigated in this study. Scan efficiency is increased by using a long cardiac acquisition window during the RR interval. This allows the acquisition of a number of independent k-space segments during each cardiac cycle. The intersegment motion is corrected using a self-guided epicardial fat tracking procedure in a postprocessing step. Finally, combining the motion-corrected segments forms a high-resolution image. Experiments on healthy volunteers are presented to show the basic feasibility of this approach.
C. Stehning, P. Bornert, K. Nehrke, H. Eggers, and O. Dössel. Fast isotropic volumetric coronary MR angiography using free-breathing 3D radial balanced FFE acquisition. In Magn Reson Med, vol. 52(1) , pp. 197-203, 2004
Abstract:
A shortcoming of current coronary MRA methods with thin-slab 3D acquisitions is the time-consuming examination necessitated by extensive scout scanning and precise slice planning. To improve ease of use and cover larger parts of the anatomy, it appears desirable to image the entire heart with high spatial resolution instead. For this purpose, an isotropic 3D-radial acquisition was employed in this study. This method allows undersampling of k-space in all three spatial dimensions, and its insensitivity to motion enables extended acquisitions per cardiac cycle. We present initial phantom and in vivo results obtained in volunteers that demonstrate large volume coverage with high isotropic spatial resolution. We were able to visualize all major parts of the coronary arteries retrospectively from the volume data set without compromising the image quality. The scan time ranged from 10 to 14 min during free breathing at a heart rate of 60 bpm, which is comparable to that of a thin-slab protocol comprising multiple scans for each coronary artery.
Conference Contributions (1)
S. Remmele, T. Voigt, J. Keupp, C. Stehning, and J. Sénégas. Simultaneous delta R1 and delta R2* quantification in 5s to monitor blood and tissue oxygenation with dynamic (C)O2 enhanced MRI. In Proceedings of the 18th Annual Meeting of ISMRM, pp. 5121, 2010
Patents (1)
S. Remmele, W. Liu, T. Voigt, and C. Stehning. Dynamic and simultaneous R1/R2* quantification using dynamic spoiled multi gradient-echo MR imaging in the steady-state. Philips Hamburg, 2003.