A new method to predict changes in a lead-field matrix induced by conductivity variations of a single body tissue is proposed. The approach is based on the princi- ple component analysis (PCA) with three initial lead-field matrices transformed to vectors as input. For each tissue blood, lungs, muscles and fat a PCA was carried out. Further, for each tissue the default conductivity value and the conductivity varied by ±50 % were used to calculate the sample lead-field matrices. The results of the PCAs in- dicate that for every tissue the first principle component suffices to predict the conductivity-induced changes in the samples. With an interpolation of the scores we addition- ally show that the prediction is not bound to the sample ma- trices but moreover every matrix within each conductivity range is possibly estimated and conclusively predicted.
P. Jones, W. Cascio, and F. B. Sachse. Design of an experimental setup for confocal imaging of cardiac microstructure. In Proc. 2nd Annual Mountain West Biomedical Engineering Conference, 2006
R. Jones. Towards a personalised volume conductor parameterisation in ECG imaging. Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT). Bachelorarbeit. 2012