Abstract:
Interatrial conduction block refers to a disturbance in the propagation of electrical impulses in the conduction pathways between the right and the left atrium. It is a risk factor for atrial fibrillation, stroke, and premature death. Clin- ical diagnostic criteria comprise an increased P wave dura- tion and biphasic P waves in lead II, III and aVF due to ret- rograde activation of the left atrium. Machine learning algo- rithms could improve the diagnosis but require a large-scale, well-controlled and balanced dataset. In silico electrocardio- gram (ECG) signals, optimally obtained from a statistical shape model to cover anatomical variability, carry the poten- tial to produce an extensive database meeting the requirements for successful machine learning application. We generated the first in silico dataset including interatrial conduction block of 9,800simulated ECG signals based on a bi-atrial statistical shape model. Automated feature analysis was performed to evaluate P wave morphology, duration and P wave terminal force in lead V1. Increased P wave duration and P wave ter- minal force in lead V1 were found for models with interatrial conduction block compared to healthy models. A wide vari- ability of P wave morphology was detected for models with in- teratrial conduction block. Contrary to previous assumptions, our results suggest that a biphasic P wave morphology seems to be neither necessary nor sufficient for the diagnosis of in- teratrial conduction block. The presented dataset is ready for a classification with machine learning algorithms and can be easily extended.