Abstract:
Current models of the human atria represent geometries of single individuals or base on statistical data. We present a work-flow for the creation of patient-specific atrial models. Furthermore we show a framework to compare simulated P- waves and body surface potential maps (BSPMs) of individual patients with measurements. Models of the atrial and thorax anatomy were segmented from MRI data. Volumetric atrial models were semi-automatically enhanced with electrophys- iologically (EP) relevant structures. Simulations were performed on an anisotropic voxel-based mesh and were forward calculated to obtain simulated BSPMs. BSPMs were acquired using a 64 electrode ECG system. Comparison of simulated and measured P-waves in Einthoven leads showed a general agreement of both, although no personalization of the atrial electrophysiology model was performed. P-wave duration was longer in the simulations, highlighting the need for elec- trophysiological model personalization. Simulated and measured BSPMs revealed similar patterns. The presented method enables realistic simulations of atrial activation on patient-specific volumetric atrial models with EP relevant myocardial structures resulting in computed ECGs (P-wave) and BSPMs with show physiological morphologies